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To the Alchemists of the World!

There was a language in the world that everyone understood, a language the boy
had used throughout the time that he was trying to improve things at the shop. It was
the language of enthusiasm, of things accomplished with love and purpose, and as
part of a search for something believed in and desired.

The Alchemist—Paul Coelho (p. 64), translated by Alan R. Clarke






Abstract

A high-level architectural diagram of a system’s organization can be useful dur-
ing software evolution. Such a diagram is often missing and must be extracted from
the code. Alternatively, an existing diagram may be inconsistent with the code, and
must be analyzed for conformance with the implementation. One important notion
of conformance, theommunication integrityrinciple, stipulates that each compo-
nent in the implementation may only communicate directly with the components to
which it is connected in the architecture.

This dissertation proposes a novel approaccm&lAH, to extract a hierarchical
runtime architecture from an existing object-oriented system, and analyze communi-
cation integrity with a target architecture, entirely statically and using typecheckable
ownership annotations.

Previous approaches to enforcing communication integrity have significant
drawbacks: they either require radical language extensions that incorporate archi-
tectural constructs at the expense of severe implementation restrictions, mandate
specialized architectural middleware, or use dynamic analyses that cannot check all
possible executions.

The key contribution is a static points-to analysis to extract, from an annotated
program, a global object graph that provides architectural abstraction by ownership
hierarchy and by types, where architecturally significant objects appear near the top
of the hierarchy and data structures are further down. Moreover, an extracted object
graph is sound in two respects. First, each runtime object has exactly one represen-
tative in the object graph. Second, the object graph has edges that correspond to all
possible runtime points-to relations between those objects.

Another analysis abstracts an object graph into a built runtime architecture.
Then, a third analysis compares structurally the built architecture to a target, and an-
alyzes communication integrity in the target architecture, without propagating low-
level implementation objects into the target architecture. An evaluation on several
real object-oriented systems showed that, in practiceici 1A can be applied to an
existing system while changing only annotations in the code, and abSA can
identify interesting structural differences between an existing implementation and
its target architecture.

*ScHOLIA stands for &atic cnformance cbacking of dject-based structuraiews of achitecture.Scholia are
annotations which are inserted on the margin of an ancient manuscript.
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Chapter 1

| ntroduction

“An object-oriented program’s runtime structure often bears little resemblance to its code
structure. The code structure is frozen at compile-time; it consists of classes in fixed inheri-
tance relationships. A program’s runtime structure consists of rapidly changing networks of
communicating objects. In fact, the two structures are largely independent. Trying to under-
stand one from the other is like trying to understand the dynamism of living ecosystems from
the static taxonomy of plants and animals, and vice versm .1994, p. 22)

This dissertation proposes a novel approa(mlﬂ@_mﬂ, to extract statically a hierarchical
runtime architecture from a program in a widely used object-oriented Iar%umjeg anno-
tations. If a target runtime architecture existH®LIA can also analyze, at compile time,
communication integrity between the code and the intended architecture. At its cerel @

relies on a novel static analysis to extract a hierarchical object graph from an arbitrary object-
oriented implementation. The extracted object graph provides architectural abstraction by own-
ership hierarchy and by types. Moreover, the object graglousdin two respects. First, each
runtime object has exactly one representative in the object graph. Second, the object graph has
edges that correspond to all possible runtime points-to relations between those objects. The ex-
traction analysis assumes that typecheckable ownership annotations provide minimally invasive
hints about the architecture, instead of requiring developers to use a specialized framework or
a new programming language. To analyze conformanceid&IA compares the built and the
designed architecture using a structural comparison for hierarchical architectural views that does
not assume that view elements have unique identifiers. Finatlyo&IA’s conformance analysis

allows the designed architecture to be more abstract, and accounts for additional communication
in the implementation without propagating low-level objects into the designed architecture.

1ScHoLIA stands for gatic conformance clcking of dject-based structuraiews of achitecture. According
to Wikipedia, scholiaare annotations which are inserted on the margin of an ancient manuscript. The metaphor
is that this approach supports existing legacy, i.e., ancient, object-oriented systems and uses annotations that other
development tools can ignore.

2This dissertation mainly considers Java-like statically-typed general purpose object-oriented languages such as
Java and C#, where each object is a Plain Old Java Object (POJO). This work does not specifically address dynam-
ically typed languages, or Java programs that use aspect-oriented programming (AspectJ), component frameworks
such as Enterprise Java Beans (EJB), etc.




1.1 Introduction

During software evolution, the most reliable and accurate description of a software system is its

source code. However, high-level architectural diagrams of the system’s organization are also
very important. For instance, a diagram can help locate the components that must be modified,
or estimate the magnitude of the impact of a change based on the dependencies among entities.

Often, such a diagram is missing, hence the neexti@ctone from the code. Alternatively,
a diagram may exist but may be inconsistent with the code. As a result, taking an important
decision on how to evolve a system based on an incorrect architectural diagram may lead to
problems during the implementation of the changes, or the implemented system may not exhibit
the desired architectural qualities. Hence, there is an important need to analgpefithrenance
of a target architecture with an implementation.

This chapter is organized as follows. Secfiod 1.2 discusses object-oriented design diagrams.
Section 1B discusses architectural views. Se¢tioh 1.4 discusses the notion of architectural ab-
straction. Sectiofn 115 discusses architectural extraction. Seéctibn 1.6 discusses analyzing ar-
chitectural conformance. Sectibnl.7 discusses the proposed appraaah, 8. Sectior 1.B
summarizes the requirements of a solution. Se€fidn 1.9 lists the contributions of this dissertation.
Sectior 1.0 concludes with a thesis statement and an outline for the rest of this document.

1.2 Object-Oriented Diagrams

Reverse engineering or architectural extraction can extract various complementary high-level
views of a system. A view can focus on the static code structure, or on the runtime structure.
Most previous reverse engineering research focuses on the code structure, while this dissertation
improves on the state-of-the-art for extracting and analyzing the runtime structure of object-
oriented systems.

1.2.1 Example

| illustrate by example the key differences between the code structure and the runtime structure
using Aphyds, a system of 8,000 source lines of Java code (not counting the libraries used), first
discussed b)J (Aldrich et &l. 20d2a). Aphyds is a pedagogical circuit layout application that an
electrical engineering professor wrote for one of his classes. Students in the class are given the
program with several key algorithms omitted, and are asked to code the algorithms as assign-
ments.

The design of Aphyds follows a two-tiered Document-View architecture. The designed ar-
chitecture (Fig[C1l1) shows tiers, components, and interactions between components. In this
diagram, an edge represents a points-to relation. User interface components\sebrbsare
in the upper half of the diagram. &rcuit and computational components, suchpasitioner,
are the lower half.
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Figure 1.1: Aphyds: designed architecture, redrawn from the original developer’s diagram reproduced in
dAIdrigh et al.;o_oja), included here with some adaptations. | renamed some components, reversed the
direction of some arrowis_(A]dLigh_eﬂé.L_ZDj)Za, p. 192) and excluded data flow edges sioe!s does

not currently show the latter.

- circuit

Circuit
T

«i ‘stantlate» - circuit

Node
«instantiate» - tnode /L - circuit
‘ Terminal
. Net « T

- tnet

Class

Figure 1.2: Aphyds: partial class diagram focusing on the claigscuit and related classes.

1.2.2 Class Diagrams

A class diagrams an important and widely used description of an object-oriented system that
shows the static code structure, in terms of classes and fixed inheritance relationships.
Many tools automatically generate class diagrams of the code structure from program source
12002). I used the Eclipse UML to@MO%) to extract a class diagram
from the Aphyds code. For example, a class diagram would showeser class, andiode
andNet classes that have a module dependencyeartor (Fig.[1.2).
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1.2.3 Object Diagrams

Another important view is anbject diagramor object graph, where nodes represent objects,
i.e., instances of the classes in a class diagram, and where edges correspond to relations between
objects. An object diagram makes explicit the structure of the objects instantiated by the program
and their relations, facts that are only implicit in a class diagram. While in the class diagram a sin-
gle node represents a class and summarizes the properties of all of its instances, an object diagram
represents different instances as distinct nodes, with their own propél:tj_e_s_ao_n_ella_andi Potrich

). For example, (Gamma etlal. 1994) used a class diagram and an object diagram to explain
several of the standard design patterns. Recent empirical evidence confirms the importance of
“how objects connect to each other at runtime when | want to understand code that is unknown:
an object diagram is more interesting than a class diagram, as it expresses more how [the system]

functions” 8).

1.2.3.1 Static vs. dynamic object diagrams

Following (Tonella and Potrich ZQb4), | distinguish betwetatic object diagramanddynamic
object diagrams. Astatic object diagranrepresents all objects and inter-object relationships

possibly created in a program, and is recovered Biatic analysisover the code. Alynamic
object diagramshows the objects and the relations that are created during one or more specific
system executions, and is recovered usig@amic analysis.

Static and dynamic object diagrams provide complementary information. A static object
diagram lacks precision on the actual multiplicity of the objects that the program may cre-
ate, or the actual relations between objects. In contrast, a dynamic object diagram, e.g.,
(Flanagan and Freund 2006), can show the exact number of instances and the actual relations
in a given program run. But a dynamic object diagram may not reflect important objects or re-
lations that show up only in other executions. For example, using a design diagram, a security
review could enumerate all possible communication between trusted and untrusted parts of a
systerﬁ. But if the diagram does not show all communication present in the implementation,
because additional communication pathways arise during other executions, the analysis may be
incorrect.

In general, there are several problems with dynamic analysis. First, a dynamic analysis may
not include important objects or relations that show up only in other executions. Second, a
dynamic analysis may not be repeatable, i.e., changing the inputs or executing different use cases
might produce different results. Third, runtime heap information does not convey design intent.
Fourth, a dynamic analysis cannot be used on an incomplete program still under development or
to analyze a framework separately from a specific instantiation. Finally, some dynamic analyses
carry a significant runtime overhead—axtB0x slowdown in one Casé_LEIanagan_a.nd_Enéund
2 (E), which must be incurred each time the analysis is run.
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1.2.3.2 Global object diagrams

Extracting a global object diagram that shows the entire application structure increases the dia-
gram’s complexity significantly. A flat object graph for an entire system often has a profusion of
objects that makes it difficult to obtain a high-level picture, even for a relatively small program.
For Aphyds, a flat object graph mixes low-level objects sucklasingTree that are data struc-
tures, with architecturally-relevant objects sucléasbalRouter from the application domain,

and a developer has no obvious way to distinguish between theni (Big. 1.3).

1.3 Software Architecture

In addition to object-oriented design diagrams, one can talk about the software architecture of
a system. A software architecture is a high-level description of a software system that is a con-
ceptual tool for documenting, reasoning about and communicating the structure of the system
to developers or to other stakeholders. Different complementary architectural views describe a
system from different perspectives (Soni et al. 1995; Kruchten/ 1995). In particular, there are two
important architectural views, ttemde architectur@and theruntime architectureéhat we discuss

next. These views are the analogues of class diagrams and object diagrams, respectively.

1.3.1 Code Architecture

A code architectureor module viewshows code entities in terms of classes, fixed inheritance
relationships, packages, layers and modules (Clements et al. 2003). A code architecture impacts
quality attributes like maintainability, and has mature tool support. For object-oriented code, a
module view is often a class diagram or a package view. And today, many tools can extract such

module views from code (Kollman etlal. 2002).

1.3.1.1 Package (layer) vs. runtime tier

A code architecture often organizes classes according to their packages. However, an applica-
tion’s code package structure is often orthogonal to its runtime structure. For example, all the
classes in Aphyds are in the same package. While this violates good programming practice, it
highlights the difference between a code-lgvatkageor layer and a runtimetier%

A class diagram (Fid._112) shows the clasS&scuit, Node, Net andTerminal all at the
same level. Of course, a class diagram can have hierarchy by using packages. But a pack-
age is just a namespace. Indeed, a developer often carefully designs the package structure to
indicate her architectural intent. For instance, she may place the@lassitViewer in the
aphyds.ui package and the claBsrtitioner in theaphyds.model package, to indicate that
CircuitViewer andPartitioner belong to differentayersin the code architecture.

3Several companies have established a process for such security retieasmodelinglHoward and Lipner
2003 Tor{ 20085, Howard and Lipner 2006). Secfion 7.8.1 (Pagk 251) discusses threat modeling further.

“We adopt the terminology of (Clements el al. 2003jayer denotes a cluster or a partition icade architecture
or amodule view. Aier denotes a cluster or a partition imantime architecturer aruntime view.
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A runtime architecture often groups conceptually relatesiances into conceptual runtime
partitions ottiers. For instance, the Aphyds developer’s diagram distinguishes presentation com-
ponents such agewerUl in the Ul tier, from computational components suchpastitioner in
the MODEL tier.

In particular, the package which contains a class does not indicate to which architectural
tiers the instances of that class belong. In the above case, the dtassedtViewer and
Partitioner from the packagesphyds.ui andaphyds.model, have their instancesgiewerUl
andpartitioner, fit nicely within theUI andMODEL tiers, respectively. But, in general, one cannot
represent the dynamic structure of an application using the static source code organization, be-
cause different instantiations of a class often have distinct conceptual purposes and correspond
to different elements in the design. For example, the code would still have a sigler class
in a java.util package. But at runtime, théewerUl component in tha&Jl tier may have an
instance ofVector, one that is different from #ector instance that is in use by tipartitioner
component in thé1ODEL tier.

1.3.2 Runtime Architecture

Another architectural view, theintime architectureor runtime view, models a software system

as an organization of runtime entities, interactions between the entities, and constraints on how
the entities interact. A runtime architecture is important, because it impacts quality attributes
such as security, performance, and reliability.

Architecture description language (ADL). A runtime architecture can be an informal boxes-
and-lines diagram, or a formal specification in an architecture description language (ADL)
Medvidovic and Taylor 2000). While many ADLs have been proposed, a common weakness
of many ADLs is the lack of enforcement with an implementation.

ScHoLIA uses the Acme general purpose ADL (Garlan et al. 2000) to document the built
and the designed architecture. Acme represents a hierarchical graph with types and attributes on
nodes and edges. The main reason we chose Acme is that its modeling environment, AcmeS-
tudio (Schmerl and Garldn 2004; AcmeStuidio 2009), is a plugin in the Eclipse tool integration
platform, as are many of the other tools that we developed dorci IA.

Most ADLs support the core elements of Acme thatH®LIA uses : (a) components; (b)
connectors; (c) tiers or groups; and (d) hierarchical decomposition to refine a component into a
nested sub-architecturle (Medvidovic and Taylor 2000).

UML. Runtime architectures have traditionally been of greater interest to academics than to
practitioners. The de facto standard for documenting design, UML, added direct support for
documenting runtime architectures only recently, with the UML 2.0 standard. With UML 2.0,

more UML tools support the manual editing of a runtime architecture. However, existing tools

do not yet support extracting a runtime architecture from code, nor do they support analyzing
the conformance of an implementation to a target runtime architecture. Overall, the tools for
the runtime architecture are still immature compared to the tools available for the code archi-
tecture. In particular, analyzing conformance between a runtime architecture and an arbitrary
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implementation remains an important but unsolved problemaSand Clemerits 2006).

1.3.3 Benefits of Architecture

All systems have an architecture, whether it is explicitly documented or not. There are several
recognized benefits to documenting the architecture of a system, as | discuss below.

1.3.3.1 System understanding

In object-oriented systems, the dominant pattern-based design methodologies encourage the
composition of systems from cooperating objects. So, engineers who want to evolve such an
existing system must understand these runtime interactions. In many cases, the architectural
documentation may be missing or out of date. When the only reliable source of information is
the source code, architects and developers often face the problem of extracting the architecture
of the system for the purpose of understanding it.

1.3.3.2 Qualitative architectural evaluation

An architect can document the architecture and use it to qualitatively evaluate risks, tradeoffs and
requirements] (Dobrica and Niemel 2{)02) survey several architectural tradeoff analysis methods.
Moreover, sufficient evidence exists about the value of architecture reviews to improve the qual-
ity of a system under development (Maranzano et al. [2005). These methods assume that the
architecture is known. However, when the architecture is missing or potentially out of date, there
must be a way to extract the built architecture from an existing system.

1.3.3.3 Quantitative architectural analysis

Quantitative architectural-level analyses can analyze specific quality attributes such as secu-
rity MMMELMEMMMQLMMQQSJMMTWW

|_2007b), performance (Spitznagel and Garlan 1998; Williams and Smith
) or rellablllty (Roshandel etlal. 2007; Immonen and Ni¢n26108).

These approaches assume that architects have an accurate runtime architecture of the system
under study. But in reality, developers often document a system’s architecture by hand, and may
forget to include all communication that exists in the implementation. Thus, it would be useful
to have a principled approach that can extract from an implementation an up-to-date runtime
architecture that matches the model required by an architectural-level analysis.

Many architectural analyses rely on assigning architectural properties to the various compo-
nent and connector instances. For example, an architectural-level security analysis assigns to
each component &ustLevel property, which can be eithéiullTrust, Partial Trust or NoTrust
(Abi-Antoun et al.| 2006, 2007b). Then, the analysis can check fdnfammation disclosure
vulnerability, where an attacker steals data while in transit or at rest. For example, this could
happen if thetrrustLevel of the source of a data flow is higher than that of its destination.

Finally, unless the implementation faithfully realizes the carefully designed architecture, the
built system may not exhibit the qualities that were carefully thought out. Indeed, the lack of
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enforced or checked conformance with the actual implementaémains the Achilles heel of

an architecture-based approalgh (Jackson and Rinard 2000).

1.3.3.4 Avoiding architectural drift and erosion

Missing or un-enforced architectural information is a key factor which contributes to architec-
tural problems, e.g.LLlakLman_eilaL_JJ999). These incardbitectural drift, i.e., “a lack of
coherence and clarity of form which may lead to architectural violation and increased inadapt-
ability of the architecture” (Perry and Wolf 1992) aacthitectural erosion, i.e., “violations in

the architecture that lead to increased system problems and bnttlehe&sl(ﬂemdhd_\/\folf 1992).
(Hochstein and Lindvall 2005) survey various techniques for combating architectural degenera-

tion, and include, among others, the ability to analyze conformance.

1.4 Architectural Abstraction

The runtime structure of an object-oriented program can be representeRwadime Object
Graph (ROG), where nodes correspond to runtime objects, and edges correspond to relations
between objects such as points-to field reference relations. It is also possible to show other edges
on the object graph, for example, ones that show field accesses or method invocations.

To date, object diagrams were mostly used to show the interactions between a small set of
core objects. Because of the immaturity of the tool support for extracting object diagrams from
code, many developers have learned to live without them, except perhaps at the design stage.

In this dissertation, | argue that object diagrams, once they are hierarchical, scale mean-
ingfully to an entire system, and thus, can also be useful to understand the global application
structure of a system. Moreover, such a global object diagram can map fairly intuitively to a run-
time architecture of an object-oriented system, which allows reusing much of the existing work
in architecture-based approaches.

An object diagram and a runtime architecture are related, but need not be identical. An object
diagram and a runtime architecture can differ in the following ways.

* Anarchitecture is global: a runtime architecture global, and shows the object structures

for the entire application. On the other hand, an object diagram is often local, and shows
the interactions between a few selected objects;

* An architecture is abstract: a runtime architecture is potentially masbstractthan an

object diagram. For example, a node in an object diagram typically corresponds to one
object or all instances of a given type. But a runtime architecture abstracts one or more
objects into conceptuabmponents, and represents how those components intecact-as
nectors(Clements et al. 2003).
= Object abstraction: a box in an architectural diagram does not necessarily corre-
spond to one object. It could represent multiple instances of the same type, or even
different, but related types;
= Object clustering: furthermore, there could be coarser groupings of objects into
groups or clusters;

1.4. Architectural Abstraction 9
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Figure 1.4: Architectural abstraction.

» Edge abstraction: an edge in an architectural diagram may correspond to a rela-
tion between objects in the implementation. In addition, an edge may correspond to
objects in the implementation.

* An architecture is hierarchical: a runtime architecture is oftemerarchical, and can
optionally decompose a component into a nested sub-architecture;
Similarly to previous work that defined requirements on architectural description languages
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(Luckham and Vera 1995; Shaw and Gatlan 1996; Shaw et al, 1@@5Jefine architectural ab-

straction as follows (Fid. 1.4):

Component abstraction. A runtime architecture showsomponentshat correspond to
runtime entities. For an object-oriented system, a component represents an object or a
group of objects. A group of objects must be a meaningful abstraction, for example, from
the application domain.
Connector abstraction. An architecture hasonnectorghat correspond to relations be-
tween runtime entities. For an object-oriented system, a connector represents a runtime
interaction between some object in one component and some object in another component.
Tier or group abstraction. An architecture often groups conceptually related compo-
nent instances into runtinteers, where dier is a conceptual partitioning of functionality;
sometimes, it identifies functionality that may be allocated to a separate physical machine,
e.g., aDATA tier (Bass et dl. 2003). Many architecture description languages (ADLs) have
the notion of a tier ogroup (Dashofy et all. 2001).
Hierarchical decomposition. A component can have a nested sub-architecture consisting
of lower-level components and connectors. Hierarchy also provides abstraction since it
enables both high-level understanding and detail.
Scalability. Large systems would benefit the most from having meaningful, documented
architectures. An architecture scales if the size of top-level diagram remains mostly con-
stant as the size of the program increases arbitrarily.
SoundnessArchitectural soundness consistsagimponent soundnessynnector sound-
ness, andier soundness:
= Component soundnessAn architecture is sound if for every Runtime Object Graph
(ROG), there exists a mapping from each runtime ohjéotexactly one component
C'in the architecture. In particular, an architecture does not show one runtime entity
as two components. Otherwise, an architectural-level analysis may assign these two
components different values for a key architectural property, which could invalidate
the results of the analysis.
= Connector soundnessif there is a runtime relation between objectand objecb,
in the ROG, then the architecture must have a connector between compGnants
(5 corresponding to the communication betwee@ando,.
= Tier soundness: If an objecto is in a runtime domain/ in the Runtime Object
Graph (ROG), then the architecture must show compo@etdrresponding t@ in
the representativ® of d.
Precision. An architecture is precise if it shows two runtime entities that represent differ-
ent conceptual design elements as two different architectural entities. An architecture is
imprecise if its elements are too coarse grained and lump together runtime elements that
serve different conceptual purposes in the design. For instance, an architecture that repre-
sents the entire system as one component is sound, but of course, grossly imprecise. We
define precision as:
= Component precision: The architecture shows two runtime entities that represent
two different conceptual design elements as two different components.
= Connector precision: The architecture shows two runtime relations that represent
two different conceptual interactions as two different connectors.
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1.5 Object Graph Extraction

Unfortunately, extracting the runtime architecture of an existing object-oriented system is diffi-
cult. In particular, because a system may create many objects at runtime, object diagrams quickly
increase in size, even for small systems.

1.5.1 Key Idea: Hierarchical Object Graphs

Hierarchy is often used to mitigate the complexity of a large graph. Hierarchy collapses many
nodes into one, and is a classic approach to shrink a large graph. Hierarchy also allows collaps-
ing or expanding selected elements (Storey et al.|2001), to allow both high-level and detailed
understanding.

Hierarchy was effective in dynamic object diagrams, eLg“_LI:IiLI_HLalJZOOZ). Because archi-
tectural hierarchy is not readily observable in arbitrary code in a general purpose programming
language, imposing hierarchy on a static object diagram is hard. Some language-based solutions,
e.g., ArchJava (Aldrich et &l. 2002a), extend the language to specify architectural hierarchy and
instances directly within the code. But approaches like ArchJava restrict how a program can
use objects. As a result, they require re-engineering an existing Java system to follow the more

restrictive rules|(Aldrich et al. 2002a; Abi-Antoun an lho 2005; Abi-An néLMOO?a),

a process which is often non-trivial.

1.5.1.1 Annotations to convey architectural intent

To achieve hierarchy in a static object diagraraH®LI1A combines annotations and static analy-

sis. In SSHOLIA, a developer picks a top-level object as a starting point, then uses local, modular,
ownership annotations in the code to impose a conceptual hierarchy on runtime objects. Hier-
archy provides architectural abstraction, whereby architecturally significant objects appear near
the top of the hierarchy and data structures are further down.

Definition 1 (Abstraction by Ownership Hierarchy and by Type&)hierarchical object graph
provides abstraction by ownership hierarchy when it shows architecturally significant objects
near the top of the hierarchy and data structures further down. Moreover, the object graph can
provide abstraction by types by collapsing objects further according to their declared types.

Just as there are multiple architectural views of a system, there is no single right way to an-
notate a program. Good annotations minimize the number of objects at the top level by pushing
low-level objects that are data structures, underneath other, more architecturally significant ob-
jects from the application domain. For example, in Aphyds, the annotations make objects of type
Node or Net part of the higher-levetircuit object (Fig[1b).

In a hierarchical object graph, an object can contain other objects. As a result, many nodes
representing lower-level objects can be collapsed underneath a node representing a higher-level
object. This is a classic approach to shrink a graph. Howew#081A collapses object nodes
based on containment, ownership and type structures, not according to where objects are syntac-
tically declared in the program, a naming convention or a graph clustering algorithm.
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Figure 1.5: Aphyds: partial hierarchy of objects.

1.5.1.2 Static analysis to achieve soundness

A static analysis then extracts from the annotated program a global hierarchical object graph that
conveys architectural abstraction by ownership hierarchy and by types. Moreover, the extracted
object graph is botbbject souncandedge sound.

Definition 2 (Object soundness)An object graph is object sound if each runtime object has
exactly one unique representative in the object graph.
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©Domains ({"DB"})

class Circuit {
©Domain("DB") Node node;
©@Domain("DB") Net net;

Figure 1.6: Aphyds:Node andNet objects argoart of aCircuit object.

Definition 3 (Edge soundnessfn object graph is edge sound if it has edges that correspond to
all possible runtime points-to relations between the representatives of the runtime objects.

1.5.2 Example

Instead of placing objects directly inside other objects{SLIA uses an extra level of hierarchy
and groups related objects insidd@main. A domain is similar to an architectural runtitres,
which is aconceptual partitioning of functionalit{Clements et al. 2003).

This dissertation uses a visualization based on box nesting to indicate the containment of
objects inside domains, and that of domains inside objects. For example, the doBi&n
inside the objectirc (Fig.[1.8). Dashed-border white-filled boxes represent domains. Solid-
filled boxes represent objects. Solid edges represent field references. An object taljeled
indicates an object referene®j of type T, which we then refer to either as “objestj” or as
“T object”, meaning for brevity, “an instance of thelass”.

ScHoLIA can describe two kinds of hierarchical information, logical containment and strict
encapsulation, which | discuss next.

1.5.2.1 Logical containment

The class diagram (Fig._1.2) shodsde, Net andTerminal classes that are all at the same level
asCircuit. From the class diagram, it is unclear whether instancéis@ andNet share one
Vector object.

An architecture often uses hierarchical decomposition to refine a component into a nested
sub-architecture (Medvidovic and Taylor 2000). For example, the Aphyds architecturie (Fig. 1.1)
showsnode andnet insidecirc’s substructure.

To define a conceptual group of lower-level objects than an object contains, wepubéca
domain. For instance, a public domaiB inside objectcirc contains objechet. This makes
net part of circ. Part of means conceptual or logical containment, which we indicate by a thin
border. Namely, nested objects may still be accessible to the outside. For instance, any object
that can referenceirc can also reference the child objeatgie andnet inside theDB domain.

A developer indicates this logical containment using annotations[(Elg. 1.6). The key idea is
to declare a public domaibB, insideCircuit and place th@ode andNet objects inside®B.

Logical containment can convey arbitrary architectural intent. For instance, the architect
could have made et object conceptually part of thertitioner object, instead of making it part
of acirc object (Fig[1.1l). Indeed, the arbitrary nature of architectural intent leaves little hope
that a fully automated static analysis could infer meaningful public domains.
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©Domains ({"OWNED"})
class Net {
private ©@Domain("OWNED") Vector terms;

Figure 1.7: Aphyds:terms object isowned byaNet object.

1.5.2.2 Strict encapsulation

The class diagram (Fig._1.2) suggests thHbae object and alet object might share the same
Vector object. But at runtime, different instances Wéctor are often part of conceptually
different components. For instanceNede object has &ector object ofTerminal objects.
Another distinctVector object, also offerminal objects, is part of diet object (Fig[ 1.8(1)).

Unlike the class diagram which shows owector class (Fig[1R), the runtime structure
can distinguish between different instanceyeftor. Moreover, in this case, we may want to
indicate that thesgector objects arestrictly encapsulatedr ownedby other objects. When an
object is owned, it is part of another object’s private stateepresentation, and no aliases to the
owned object can leak to the outside.

A developer indicates that an object is encapsulated by placing ipnvate domain. For
examplenet has a private domaibWNED and objectterms inside OWNED (Fig.[1.7). Our visu-
alization shows a private domain with a thick dashed border [Fig. 1.8(b)). In particular, strict
encapsulation guarantees that there can be no incoming references éxtnsabject encapsu-
lated inside aet object.

Although Net and Node objects have their respective distintictor objects, those two
Vectors may refer in turn to the sanTerminal objects that are also DB.

A strictly encapsulated field cannot be assigned to by a public modifier method, or returned
from a public accessor method. So there are existing static analyses that can identify strictly
encapsulated objects.

1.5.2.3 Sound approximation

An OOG is an approximation of the actual objects and relations, one that is conservative and
may include more objects and relations than those that will actually be there, by virtue of using
a sound static analysis. An OOG, like any static object diagram, can be imprecise in several
ways (Fig[1.8(h)). First, it makes no guarantees about the multiplicities of objects at runtime.
For example, a given program run of Aphyds may not instantiate a Sitedke or Net object.
Second, although the diagram shows an edge frems to term, a given program run may not
actually have such an edge. For instancetthens Vector may remain empty during one entire
program execution.

1.5.2.4 Aliasing

Aliased object must be represented by the same runtime component in the architecture. If an
architecture deceptively showed two components for one runtime entity, one could assign these
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Figure 1.8: Aphyds: representinQircuit’s runtime sub-structure.

two components different values for a key architectural property suttastevel, which could
lead an analysis at the architectural level to produce misleading results.

In a program, several object references may alias, i.e., refer to the same object at runtime.
Therefore, an alias analysis is needed to identify possible aliasingcHOSA, we rely instead
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on the precision about aliasing that ownership domains.offerparticular, the type system
guarantees that two objects in different domains can never alias. But two objects of compatible
types, in the same domain, may alias. The analysis uses this information to ensure that the
diagram reflects possible aliasing. For instance, consider atilss of type Stack that is in

the same domaidwNED asVector insideNet. SinceStack is a subtype ofector, the object
diagram would displayemps andterms as a single object.

1.5.2.5 Abstraction by hierarchy

SCHOLIA represents a hierarchical object graph as a nested graph with domains and objects
inside those domains. Like other such representations, hierarchy allows information at any level
to be displayed or elided to show overviews of the system at the desired level of abstraction
(Storey et all. 1999).

For instance, Fid. 1.8(c) collapses the substructungdt andNet object. A (+) symbol
indicates that an object has a collapsed sub-structure. As a result, a low-level object such as
Vector no longer appears at the same leveNage or Net objects. Moreover, collapsing the
substructure oflode andNet still represents their relation erminal. As an aside, note how
Fig.[1.8(c) is comparable to the substructureiefuit in the target architecture (Fig.1.1).

We can use the same nested box visualization to represent the entire Aphyds object tree
(Fig.[1.B). Collapsing the sub-structure of most objects produces an object graph that is much
more manageable than a flat one. The hierarchical graph_ (Flg. 1.9) has all the objects that are in
the flat graph (Figllﬁ) However, the hierarchical graph collapses into one node several objects
that are in the flat graph, based on the ownership and the logical containment information of
those objects, and optionally, based on their declared types.

In summary, an object-oriented program’s runtime structure often bears little resemblance
to its code structure. One code element can appear as multiple elements in a runtime structure.
In addition, due to possible aliasing, multiple code elements can also correspond to the same
element in the runtime structure.

1.5.3 Previous work on architectural extraction

We discuss most of the previous work on architectural extraction in Sectibn 8.6[(Pdge 291). In
summary, previous work in architectural extraction used dynamic analysis, static analysis or a
mix of the two. A dynamic analysis takes a snapshot of the heap at runtime, and reveals the
structure at that instant in great detail (Flanagan and Freund 2006). Still, it is possible to obtain a
high-level picture from the profusion of objects, through the use of extensive graph summariza-
tion and manipulation (Mitchell 2006; Mitchell et| 09). However, such a snapshot shows
one or more executions, meaning it may not reflect important objects or relations that show up
only in other executions.
On the other hand, a sound static analysis can extract an object graph that captures all exe-

cutions. All previous static analyses produce non-hierarchical object graphs that explain runtime

SNote, the hierarchical graph shows all the objects that the program may produceSxca objects, which
| purposely excluded. For consistency, | also manually elgteding objects from the flat graph.
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Figure 1.9: Aphyds: hierarchical object graph.

interactions in detail (Jackson and Waingﬂold 2001; O’'Callahan 2001; Lam and Rinard 2003), but

convey little architectural abstraction, as can be seen in the Aphyds flat object graph(Fig. 1.3).

1.5.4 Summary

ScHoLIA fulfills a previously unexplored space, that of hierarchical static object diagrams. Hi-
erarchy makes an object diagram scale to show the object structures of an entire application,
instead of just the interactions between a small set of objects. Furthermore, a hierarchical ob-
ject graph can provide architectural abstraction and can map intuitively onto a standard runtime
architecture.

In Chaptef B, we discuss more precisely how to abstract an object graph into a Component-
and-Connector (C&C) view, which is a standard representation of a runtime architecture. In-
tuitively, a canonical object in an OOG maps to a component, and a domain maps to a tier.
Moreover, the abstraction step is largely automated. Even though a developer can control the ab-
straction, we will almost always use the default options when extracting an OOG and abstracting
it into a C&C view, as our evaluation in Chapkeér 7 will show.

As a result, we will often use the terms “hierarchical object graph” and “runtime architecture”
interchangeably. Similarly, we will use the terms “component” and “tier” interchangeably with
“object” and “domain”, respectively.
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1.6 Architectural Conformance

In some domains, it is possible to generate the initial code from an architecture. But developers
can still modify the implementation directly and potentially cause it to diverge from the archi-
tecture. If the architecture and implementation are inconsistent, the properties that an architect
carefully designed into the architecture may not hold in the implementation. Thus, there is value
in determining if the implementation conforms to the architecture. Similarly, architects who
want to keep their systems evolvable, or maintain various runtime invariants, must ensure that
the runtime structure of the built system conforms to the architect’s intended architecture. Sev-
eral researchers have reported that informal architectural diagrams that architects have of their
systems, while mostly accurate, often omit important communication that exists in the imple-

mentation/(Murphy et al. 2001L; Aldrich et/al. 2002a).

1.6.1 Key Property: Communication Integrity

A system conforms to its architecture if the architecture is a correct abstraction of the runtime
behavior of the system. Thmmmunication integrityproperty defines one notion of structural
conformance, namely how architectural structure constrains runtime communication in the im-
plementatlonKMmmmﬁLmMmm%@iMAMMOOZa) as follows:
Definition 4 (Communication integrity)Each component in the implementation may only com-
municate directly with the components to which it is connected in the architecture.

Of course, communication integrity is not the only notion of conformance that may need to be
enforced. For exampIéJ_(Lugkham_andAHQL&i%S) identified additional criteria for conformance:
Definition 5 (Decomposition).For each component in the architecture, there should be a corre-
sponding component in the implementation.

Definition 6 (Interface Conformance)Each component in the implementation must conform to
its architectural interface.

In this dissertation, we focus on communication integrity, since it is a fundamental confor-
mance property relating architecture to implementation, upon which several other conformance
properties rely 3). Because communication integrity mandates which components
communicate, it provides the foundation for other architectural properties that depend on how
these components communicate.

Indeed, many other conformance analyses could be defined. For example, one analysis may
enforce a minimum or a maximum in a pool of replicated components. However, there are limits
to what can be checked statically because a static object diagram lacks precision on the actual
multiplicity of the objects that the program may create, or on the actual relations between objects.

1.6.2 Establishing traceability

When the architecture and the code evolve independently, traceability between the designed ar-
chitecture and the code is often lost. Once traceability is lost, the development team slowly

gives up on having a documented architecture (Jackson and Rinard 2000). Having traceability
between the code and a designed runtime architecture has many potential benefits, including
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clearer documentation, more focused development, inaleastem understanding, and a more
precise impact analysis of the proposed changes (Lindvall and Sandahl 1996). However, estab-
lishing traceability after the fact is still difficul noudakis and Zisman 2005). The proposed
conformance analysis establishes traceability as a side benefit.

1.6.3 Previous work in architectural conformance

We discuss most of the previous work on architectural conformance in Chapter 8.9 (Page 299). In
summary, enforcing communication integrity in arbitrary object-oriented implementation code is
challenging due to programming language mechanisms that obscure communication pathways,
such as references and objects, so previous systems have made serious compromises.

To side-step the problem of architectural conformance, some approaches radically change
the programming language to incorporate architectural constructs at the expense of severe
implementation restrictions, e.gl, (Aldrich et al. 2002a; &ehet al. 2008). Others require
that developers implement their applications on specialized architectural middleware or frame-
works (Medvidovic et a 6; Malek etlal. 2005), or require an implementation to follow strict

style guidelines that prohibit sharing mutable data between compOIJnﬁnls_LLugkha.m_énd Vera
). Still other approaches require developers to always generate parts of the implementa-
tion from an architectural model (Shaw etlal. 1995; Miller and Mukerji 2003). Finally, to ana-
lyze conformance after the fact, previous approaches use dynamic anblgLs_e_s_(S_eﬂka etlal. 1996b;
'Schmerl et dl. 2006), which, by definition, cannot check all possible system executions.

1.7 The Scholia approach

A general approach to verify the runtime structure must extract a structure that captures all po-
tential executions of a program, then abstract that structure into a high-level representation that
is suitable for comparison with the intended architecture.

SCHOLIA enables a developer to extract the built runtime architecture, then use the archi-
tecture for documentation, communication, qualitative evaluation or quantitative anal sis. For
the architectural extraction,CHOLIA adopts theextract-abstract-presergtrategy

). And for the conformance analys&;HbLlA follows the extract-abstract- checlmodel
dE@JSﬁL{jJLlQQ&MMLphMAL.Zd JThe steps are as follows (Fig._1110):
. Add annotations to the code and type-check them;

2. Extract a soundobject graph that conveys architectural abstraction by hierarchy and by

types;

3. Abstractan extracted object graph into a built runtime architecture;

4. Presentthe built runtime architecture in an architecture description language (ADL) or an
architectural modeling environment.

In addition, if the developer can separately document the system'’s target architecture, he can
analyze the conformance of the built architecture to the target, as follows:

1. Document the designed runtime architecture;

6Reflexion Models (RM)|(Murphy et &l. 2001) inspire¢tiSoLIA heavily, even though RM works only on the
code architecture. We compare and contrast the two approaches in more detail in[Seclion 6.6.4{Page 218).
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2. Structurallycomparethe built and the designed hierarchical runtime architectures;
3. Checktheir conformance and enfor@®mmunication integrityn the designed runtime
architecture; and
4. Compute a measure of their structural conformance.
Based on the findings, a developer can perform any of the following:
(a) lteratively refine the annotations based on visualizing an extracted object graph, before ab-
stracting it;
(b) Fine-tune the abstraction of an object graph into an architecture;
(c) Manually guide the comparison of the built and the designed architecture, if the structural
comparison fails to perform the proper match;
(d) Correct the code if she decides that the designed architecture is correct, but that the imple-
mentation violates the architecture; or
(e) Update the designed architecture if she considers that the conformance analysis highlights
an error or omission in the architecture.

Variations. There are several variations on ther®LIA approach.
* Visualize the ownership annotations:A developer may be interested in adding owner-

ship annotations to detect and prevent aliasing bugs that lead to representation @xposure
In that case, SHOLIA can visualize the ownership structure of an application in order to
help a developer fine-tune the annotations. Indeed, one can conceivably use an OOG to
judge the quality of the annotations in a program, whether they are added manually or us-
ing an inference tool (A. Milanova, personal communication, 2008). Such a judgement is
necessarily subjective. A more objective criterion is to compare an OOG to a benchmark,
which could be, for example, a target architecture.

"The code quality tool FindBugs (findbugs . sourceforge.njtuses a shallow, unsound static analysis to
warn about possible representation exposure. It is precisely these mistakes that ownership types can prevent.
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* Understand the application’s object structures: Today, a developer can use a number of
existing tools to extract a class diagram from the code relatively easily, to help her under-
stand the static code structure of a system. She may want to complement her understanding
of the system by studying its runtime structure. So she may be interested in visualizing an
object graph and tracing from objects and edges in the object graph to the code.

1.8 SCHOLIA s Requirements

From the above discussion, | list the requirements of a proposed solution. These requirements are
mainly based on generally accepted good practices, shortcomings of previous approaches, and
the needs for industrial adoptability. In Sectlon]9.1 (Fagé 305), | return to these requirements
and systematically evaluate howwSoLIA meets each one.

Because SHOLIA follows the extract-abstract-check strategy, | organize the requirements as
being on the overall approach (Section 1.8.1), the annotations (SEctioh 1.8.2), the architectural
extraction (Section _1.8.3), the architectural comparison (Settionl 1.8.4), and the architectural
conformance analysis (Section 1]8.5).

1.8.1 Overall Approach

I identify the following requirements on the overall approach:

RQ O1 - Hierarchical architectural models: Modeling a software architecture as a hierarchy
of component instances is a generally accepted notion, and many existing ADLs model
architecture in this way (Medvidovic and Taylor 2000). Such a model enables a developer
to understand the relations between components at a high level, then drill down and study
each component recursively.

RQ O2 — Static analysis: Static analysis can extract sound information which considers all
possible executions. In contrast, dynamic analysis considers only a few program runs
(Sefika et al. 1996h; Schmerl et al. 2006).

RQ O3 — Arbitrary implementation code: To be adoptable, the approach must handle exist-
ing object-oriented languages, design idioms and patterns. The approach must also support
existing frameworks and libraries, and must not require a specific implementation frame-
work. A developer should not have to re-engineer a system to expose its architecture using
an extended languade (Aldrich etlal. 2002b; &ehet all 2008), or to implement the sys-
tem on a specialized framework or middleware (Medvidovic et al.|1996; Malek et al. 2005;
Bruneton et al. 2006). As (Di Nitto and Rosenblum 1999) pointed out, a middleware often
inducesan architectural style on an application that uses it.

RQ O4 — After the fact analysis: This dissertation focuses on extracting the architecture, and
analyzing the conformance of an existing system after the fact. In contrast, model-driven
approaches assume that developers always update an architectural model, then generate the
code from the architecture to ensure conformance, mlﬁd.ww et al.

LZD_d3) Despite the recent trend in Model-Driven Architecture

([MJJJﬂLa.nd_MquthZD_QB) code generation is applicable only in certain domains, as it is

often too restrictive, and does not handle legacy code. Whenever developers can directly
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modify the implementation, as is often the case, they campiatly introduce architectural
violations.
RQ O5 — Automation: The different steps of the approach must be semi- or fully automated.

1.8.2 Annotations

I identify the following requirements for the annotations:

RQ ANNL1 — Language support for annotations: The annotations must not extend the lan-
guage. Instead, they must be structured comments or use available language support for
annotatior In addition, the annotations must not affect the program’s runtime semantics.

RQ ANNZ2 — Real object-oriented code: The annotations must support existing object-oriented
code that uses aliasing, recursion, inheritance, inner classes, etc.

RQ ANNS3 — Expressiveness:The annotations must be expressive and allow annotating a pro-
gram without having to refactor it to express its architecture. Having to refactor existing
code to annotate it increases the cost of adopting the approach.

RQ ANN4 — Automation: A tool must check that the annotations are consistent with each other
and with the code. Ideally, a tool also helps with adding the annotations to a program. At
least, the annotations should be amenable to automated inference.

1.8.3 Architectural Extraction

The goal of the extraction is to extract an object graph that soundly approximates all possible
Runtime Object Graph (ROG)s. | identify the following requirements for the object graph ex-
traction:

RQ EXT1 — Summarization: Different program runs generate a different number of objects.
Furthermore, the number of objects in the Runtime Object Graph (ROG) is unbounded.
An object graph must be a finite representation of all Runtime Object Graphs (ROGS).

RQ EXT2 — Hierarchy: An object graph must provide architectural abstraction by hierarchy
and support both high-level understanding and detail. It must show architecturally signifi-
cant objects near the top of the hierarchy and data structures further down.

RQ EXT3 — Object soundness: The object graph must show exactly one unique representative
for each runtime object.

RQ EXT4 — Edge soundness:The object graph must show edges that correspond to all possible
runtime points-to relations between the representatives of the runtime objects.

RQ EXT5 — Traceability: Each node or edge in an object graph should be traceable to a set of
nodes from the program’s abstract syntax tree, and to the underlying lines of code.

RQ EXT6 — Precision: Ideally, the object graph should have no more edges than soundness
requires. However, there may be false positives that are due to infeasible paths. This is an
inherent problem in any static object diagram.

RQ EXT7 — Scalability: The static analysis to extract an object graph must scale.

RQ EXT8 — Automation: Tool support must be available to extract an object graph from an
annotated program. Furthermore, the extraction tool must have interactive performance.

8The C# language supports custom attributes, and Java 1.5 supports annotations (Bloch 2004).
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1.8.4 Architectural Comparison

| identify the following requirements for the architectural synchronization:

RQ COMP1 — No unique identifiers: The comparison should not assume that the architectural
view elements have unique or persistent identifiers.

RQ COMP2 — No ordering: The comparison should not assume that an architectural view has
an inherent ordering among its elements.

RQ COMP3 - Insertions, deletions, and renamesThe comparison must handle elements
that are inserted, deleted and renamed across two architectural views.

RQ COMP4 — Hierarchical moves: The comparison must detect elements that are moved up
or down a number of levels in the hierarchy.

RQ COMP5 — Manual overrides: The user must be able to force or prevent matches between
selected view elements. The comparison should then take these constraints into account to
improve the overall match.

RQ COMP6 — Type information optional: The comparison should not assume that the view
elements have type information that matches exactly. It should be able to recover a cor-
rect mapping from structure alone if necessary, or from structure and type information if
type information is available. It should, however, take advantage of any available type
information, and avoid matching elements that have incompatible types.

RQ COMP7 — Disconnected and stateless operationfhe comparison should work after the
fact, in a disconnected and stateless mode. In other words, the comparison should not rely
on the ability to monitor, intercept, or record the structural changes to an architecture as
they occur.

RQ COMPS8 — Automation: The comparison must be semi- or fully automated.

1.8.5 Architectural Conformance

I identify the following requirements for the architectural conformance analysis:

RQ CHK1 — Communication integrity: The conformance analysis must enfoocoenmunica-
tion integrity, and must not have false negatives about possible component communication.

RQ CHK2 — Few false positives: Any sound static analysis is bound to generate false positives.
However, the rate of false positives must be low. Otherwise, developers will waste most of
their time wading through spurious warnings.

RQ CHK3 — Traceability: The conformance analysis should establish traceability between the
target architecture and the underlying source files. A developer should be able to trace
from each conformance finding to the pertinent lines of code, without having to potentially
review the entire code base to investigate a suspected architectural violation.

RQ CHK4 — Automation: The conformance analysis must be fully or semi-automated.

1.9 Contributions

This dissertation contributescBOLIA, the first approach to statically extract a hierarchical run-
time architecture from existing object-oriented code, requiring only annotatiooBOISA is
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also the first approach to analyze at compile time commuwicatitegrity between code in a
widely-used object-oriented language and a rich, hierarchical description of the architect’s in-
tended runtime architecture. | break up the overall contribution into the following contributions:

Static analysis to extract a hierarchical object graph from a program with ownership
annotations. | designed a novel static analysis to extract a hierarchical object graph, which
provides architectural abstraction by ownership hierarchy and by types (Chhpter 2). The
annotations implement the ownership domain type system (Aldrich and Chambelrs 2004),
and can be checked for consistency with each other and with the code using a tool.
Formal validation of soundness. To validate the object graph extraction algorithm, 1
represent the core of the algorithm into a formal system incorporating the key constructs
of a Java-like language and prove soundness properties (Chhpter 3).

Evaluation of the annotations and the object graph static analysis.l improved the

tool support for the ownership domain type system, then used the tools to add annotations
to real object-oriented code. To my knowledge, these are some of the largest and most
substantial case studies in evaluating ownership types. In addition, | implemented the static
analysis to extract object graphs, and extracted meaningful hierarchical object graphs from
several representative systems that | annotated manually (Chhpter 4).

Novel comparison of hierarchical architectural views.l developed a novel approach for
structurally comparing two hierarchical architectural views (Chdgter 5). Using structural
information enables detecting elements that are inserted, deleted, renamed, or moved up or
down in a hierarchy. In contrast, previous approaches to differencing architectural views
assume that view elements have unique node identifiers, which is often not the case. Other
approaches detect only insertions and deletions, and as a result, lose the properties of
architectural elements, upon which several architectural-level analyses rely.

Novel techniques to abstract an object graph into a built runtime architecture, then
analyze conformance between a built and a target architecture An extracted object
graph may not be isomorphic to the architect’s intended architecture, making further ab-
straction necessary. | specialized the view synchronization approach, which makes two
views identical, to analyze conformance. The conformance analysis allows a designed
architecture to be more abstract than a built architecture. SGiHd&IA soundly sum-
marizes in the designed architecture any additional communication that is present in the
implementation, without propagating low-level implementation objects into the designed
architecture. For example, CBIOLIA can represent some objects in the built architecture

as part of a connector in the designed architecture (Chidpter 6).

Evaluation of the end-to-end conformance analysis approachUsing case studies, |
demonstrate that, in practicec80LIA can be applied to existing systems while changing
only annotations in the code, thatSoLIA can find interesting architectural violations,

that these violations can be traced to code, and tbatd®1A computes sensible confor-
mance metrics (Chapter 7).

1.10 Thesis Statement and Outline

The thesis of this dissertation is:

1.10.
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SCHOLIA can extract a sound, hierarchical, runtime architecture from an existing
object-oriented system and analyze communication integrity with a target architec-

ture, entirely statically and using typecheckable ownership annotations.

| created several corresponding hypotheses, subordinate to the main thesis. Since each hy-
pothesis is smaller than the main thesis, each can be directly supported by evidence. Taken to-
gether, these hypotheses solve the problem of architectural extraction and conformance analysis,
for an important class of object-oriented systems.

1.10.1 Hypothesis: Annotations

H-1: Lightweight typecheckable ownership annotations can specify, within the code,
local hints about object encapsulation, logical containment and architectural tiers.

Success criteria. The success criteria to objectively measure or falsify this hypothesis include:

Ownership domain annotations are a natural expression of architectural intent in practice,

i.e., they capture software engineering intuition;

It is possible to annotate existing object-oriented code that uses the Java standard library
or other third-party libraries;

It is possible to use existing language support for annotations, software development tools
and integrated development environments, without requiring language extensions;

An annotated program has few remaining annotation warnings;

Successfully annotating an existing program requires no or few changes to the code;

By adding annotations, a developer can detect code-level violations of the architectural

intent.

Evidence. We support this hypothesis with the following evidence:

1.

2.

| evaluate the annotations on several representative, extended examples of medium-sized
Java programs, developed by others, using the success criteria above (Chapter 4).

The evaluation shows that, in practice, a developer can capture as program annotations
some of his architectural intent. Some of that intent may be currently captured as informal
comments in the code or informal architectural diagrams.

. We present concrete examples of how, in practice, the annotations can effectively help a

programmer identify design problems such as tightly coupled code and suggest ways to
refactor the code, e.g., by programming to an interface or using a mediator.

1.10.2 Hypothesis: Extraction

H-2: In practice, a static analysis can extract from an annotated program a global,
hierarchical object graph that provides architectural abstraction by ownership hier-
archy and by types.
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Success criteria. The success criteria to objectively measure or falsify this hypothesis include:

* An extracted object graph has fewer objects at the top level, compared to a flat object
graph, due to the effective abstraction of objects by ownership hierarchy and by types;

* An extracted object graph does not show low-level objects that are data structures at the
top level,

* An extracted object graph rarely suffers from too much or too little abstraction that lead
to a useless representation. E.g., rarely does an extracted object graph appear as a fully
connected graph, or show one box for the entire system;

* The hierarchy in an extracted object graph corresponds to the system decomposition in
architectural diagrams;

* An extracted object graph can help a developer improve the quality of the annotations by
encouraging her to push more objects underneath other objects to reduce clutter at the top
level;

* An extracted object graph provides overviews of a system’s runtime structure at various
levels of abstraction;

* An extracted object graph can give insights into the system’s runtime structure by iden-
tifying undocumented information, contradicting documented information or highlighting
interesting structural information.

Evidence. We support this hypothesis with the following evidence:
1. A definition of a static analysis to extract a global object graph from a program with own-
ership domain annotations (Chagtér 2);
2. An evaluation of the static analysis on several real object-oriented systems (Chapter 4),
using the success criteria above;
3. Adetailed description of the different choices a developer can make to extract a meaningful
object graph from an annotated program.

1.10.3 Hypothesis: Soundness

H-3: Each extracted object graph is sound, i.e., it maps each runtime object to ex-
actly one node in the object graph, and represents all edges between runtime objects,
in any program run.

Evidence. We support this hypothesis with the following evidence:
1. A formal definition of the core of the analysis using abstract interpretation (Chapter 3);
2. A formal proof ofobject soundnesandedge soundneg€haptefB).

1.10.4 Hypothesis: Abstraction

H-4: An analysis can abstract an object graph into a component-and-connector
runtime architecture in a standard architecture description language.
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Success criteria. The success criteria to objectively measure or falsify this hypothesis include:
* A developer can apply the abstraction techniques, without having to manually select and
elide individual objects or domains.

Evidence. We support this hypothesis with the following evidence:
1. A definition of a mapping between a hierarchical object graph and a standard architecture
description language (Chapfér 6);
2. An evaluation of the approach on several real object-oriented systems (Chapter 7).

1.10.5 Hypothesis: Comparison

H-5: An analysis can structurally compare the built architecture to a documented
target runtime architecture.

Success criteria. The success criteria to objectively measure or falsify this hypothesis include:
* A developer can use the comparison, without having to manually force or prevent matches
between the majority of individual objects or domains.

Evidence. We support this hypothesis with the following evidence:
1. A definition of an approach for differencing and merging hierarchical architectural views
based on structural information (Chagtér 5);
2. An evaluation of the approach on several real runtime architectures for object-oriented
systems (Chaptét 5).

1.10.6 Hypothesis: Conformance

H-6: An analysis can analyze communication integrity against a target architecture,
establish traceability between the target architecture and the code, and compute
structural conformance metrics in practice.

Success criteria. The success criteria to objectively measure or falsify this hypothesis include:

* The approach can show the absence or presence of a relation or communication between
two components, one that was previously unknown, and possibly a sign of bad coupling;

* The approach can provide positive assurance that the code conforms to an intended archi-
tecture;

* The approach can help a developer find and reconcile interesting differences between an
implementation and a target architecture. A finding is interesting if it identifies undocu-
mented information, contradicts available documentation, or highlights a potential design
or implementation defect.

* A developer can investigate a suspected code-level violation of the conformance policy
by tracing from the extracted architecture to the relevant lines of code without having to
potentially review the entire code base, thus making the warning actionable;
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* A tool can enforce structural constraints on the extracted architecture using architectural
constraints, types and styles. A subject system could follow or nearly follow some of these
constraints. Of course, the structural constraint must have some rationale, e.g., to satisfy
quality attributes such as security or performance. For example, if the architecture dictates
a pipeline according to the Pipe-and-Filter style, where components are connected in se-
guence, the tool raises a warning if the built architecture shows connections that bypass
elements of the sequence or form a cycle.

Evidence. We support this hypothesis with the following evidence:
1. An end-to-end approach for enforcing communication integrity in a target architecture
(Chaptef®);
2. An evaluation of the approach on several real object-oriented systems (GhBapter 7), using
the success criteria above.

1.11 Summary

The quote at the beginning of the chapter from the landmark Design Patterns book emphasizes
the need for understanding a system’s runtime architecture, together with its code architecture
dG_amma_el_dL_lQ_M). This dissertation proposes&LIA, a principled approach to extract the
runtime architecture of an arbitrary system written in a general purpose programming language,
using annotations. Moreover, if a target architecture existsjc@&IA can analyze its confor-
mance with the implementation, and enforce communication integrity in the target architecture.

Such an approach can increase the effectiveness of reasoning architecturally about existing
systems, because it ensures that the architecture is a faithful representation of the code, which is
ultimately the most reliable and accurate description of the built system.
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Chapter 2
Object Graph Extraction L

In this chapter, | describe informally howc80LIA uses annotations and a static analysis to
extract a hierarchical object graph that provides architectural abstraction by ownership hierarchy
and by types.

2.1 Introduction

A Runtime Object Graph (ROGgpresents the runtime structure of an object-oriented program.
Nodes correspond to runtime objects. Edges correspond to relations between objects such as
points-to field reference relations. The goal of the object graph extraction static analysis is to
construct a hierarchical object graph that soundly approximates any ROG that any program run
may generate.

The rest of this chapter is organized as follows. In Sec¢tioh 2.2, I illustrate the differences be-
tween the code and the runtime structure using Listeners, a system smaller than Aphyds (Chap-
ter[1.2.1, PagEl2). Section R.3 presents the annotations that specify architectural intent in the
code. Sectioh 214 presents a static analysis that extracts an object graph by abstract interpretation
over the annotated program. | discuss various advanced features in $edtion 2.5 and conclude
with a discussion in Sectidn 2.6.

2.2 Code vs. Runtime Structure

In this chapter, | use as a running example the Listeners system, a small Document-View ar-
chitecture. In ListenerarChart andPieChart objects render &odel object. All classes
implement aListener interface. | chose this example because empirical data shows that listen-
ers are often hard to understand in object-oriented MI. 2008, Fable 2)

For presentation purposes, | simplified the Listeners example (the code is [0 Fig. 2.1). In
particular, theListener interface does not havenatify () method, that all the classes imple-

1Portions of this chapter appeared!in (Abi-Antoun and Aldrich 2007b, 2008b, 2009a).

28) report the following quote from a participant in an exploratory user study: “If you have [many]
system listeners, where people register methods or classes to callback [. . . an] interesting visualization would be [. . .]
to explore the actual instances of classes at run-time; it would be better than the list of listeners”.
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interface Listener {

}

class BaseChart implements Listener {
private List<Listener> listeners = new List<Listener>();

}

class BarChart extends BaseChart {

3

class PieChart extends BaseChart {

}

class Model implements Listener {
private List<Listener> listeners = new List<Listener>();

}

class Main {
Model model = new Model();
BarChart barChart = new BarChart();
PieChart pieChart = new PieChart();
}

Figure 2.1: Listeners: code without annotations.

menting the interface have to implement. Moreover, | tigat: as a class, although in the Java
Standard library.ist is an interface that is implemented by concrete classes sugiraglList.
Also, in the following discussion, when | refer to BarChart object”, | mean “an instance of
theBarChart class”.

2.2.1 Code Structure

A developer evolving an object-oriented system needs to understand the type structure of the

program, which is typically represented as a class diagram. Today, many tools can extract such

class diagrams from code. For example, | used EcIipseLMBnLLﬂ) 2006) and M(Agile]
) to extract class diagrams from the Listeners program[(FEig. 2.2).

Fig.[2.2 shows classes, inheritance and association relations. For instance B:laSkest
andPieChart extend fromBaseChart. BaseChart andModel implement aListener inter-
face. The diagram also shows associations ffote1 andBaseChart toList. A class diagram
explains the type structure of an application but sheds little light on its runtime structure. From
the class diagram, it is unclear whether instancés e€hart andBarChart, which inherit from
BaseChart, share on&istener object.

In a class diagram, it is also common to see several classes depend on a single container class
such ad.ist orVector. However, different instantiations of such a class often have distinct con-
ceptual purposes and correspond to different elements in the design. Based on the class diagram,
it is unclear if instances dfieChart andBarChart share oné.ist object. For instance, a ref-
erence of typé.istener inside an object of typeist<Listener> can correspond to multiple
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(a) Code architecture extracted by Eclipse UML.

(b) Code architecture extracted by AgileJ.

Figure 2.2: Listeners: class diagrams.

design elements, based on the context. Insideéltldel class, a list element of tygeistener
refers to an object of typBaseChart or one of its subclasses. But inside BeseChart class,
a list element of typ&istener refers to an object of typ#odel.

2.2.2 Runtime Structure

A developer also needs to understand the runtime structure of an application, which is often
represented as an object diagram. Unfortunately, the tools to extract meaningful object graphs
from arbitrary object-oriented code are less mature than the tools that extract class diagrams.
Fig.[2.3(a) shows the runtime structure of the application, and uses the following graphical
conventions. Box nesting indicates hierarchical containment. Dashed white-filled boxes repre-
sent conceptual groups of objects or tiers. A solid border grey-filled rectangle with a bold label
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Figure 2.3: Listeners: hierarchical object graphs.

represents an object. A solid edge represents a field reference between two objects. An ob-
ject labeled “obj : T” indicates an object of tygéas in UML object diagrams. For example,
barChart:BarChart indicates aarChart reference that is of typBarChart.

Conceptually, each view has a separateteners collection object, and th@isteners
object of apieChart is distinct from that of @arChart (Fig.[2.3(a)). In a runtime view, we
model these lists agart of a barChart or model. At runtime,BarChart andModel objects
each contain &ist of Listener objects.

An analysis for object-oriented code must handle inheritance. In this Basehart and
BarChart extend a super clasBaseChart, and it isBaseChart that declare th@isteners
field. In addition, there is possible aliasing. If thésteners field of BarChart andModel
referred to the same object at runtime, the architecture in[Fig. P.3(a) would be deceptive; a
correct architecture must show them as one object.

In many object-oriented design patterns, much of the functionality is determined by what in-
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stances point to what other instances. For instance, in tiser@ér design pattert al.
1994, p. 293), understanding “what” gets notified during a change notification is crucial for un-
derstanding the functioning of the system, but “what” does not usually mean a class, “what”
means a particular instance.

For instance, Fid. 2.3(a) highlights thahadel object is potentially registered as a listener
for a barChart object, but apieChart object and @arChart object are not registered as
listeners to each other.

Ideally, an architecture “can be read in 30 seconds, in 3 minutes, and in 30 minutes”
(Koning et al/ 2002). In Fig- 2:3(b), we elided the sub-structureisaethart, pieChart and
model, and no longer show the variolsst objects (the (+) symbols on the object labels remind
us of the elided substructures). In addition, the dotted edges summarize any solid edges by lifting
them from elided objects to visible ones.

2.3 Annotations

ScHoLIA’s principled architectural extraction combines type annotations and a static analysis. A
developer guides the architectural abstraction by adding annotations to the source code to clarify
the architectural intent. Because architectural hierarchy is not readily observable in arbitrary
code, the annotations specify, within the code, object encapsulation, logical containment and
architectural tiers, which are not explicit constructs in general purpose programming languages.

2.3.1 Object and Domain Annotations

The SCHOLIA annotations implement the ownership domain type sysh:gm (Aldrich and Chambers
@D, which | review while explaining the annotations that a developer might add to the imple-
mentation of the Listeners system (Hig.]2.4).

Definitions. An ownership domainis a conceptual group of objects with an explicit
name and explicit policies that govern how it can reference objects in other domains
(Aldrich and Chambelis 2004). The annotations assign each object to a single ownership domain
that does not change at runtime. A developer indicates what domain each object is part of by
annotating each reference to that object in the program. A typechecker validates the annotations
and identifies where the annotations are inconsistent with each other or with the code.

The annotations also describe policies, caliednain links, that govern object references
between ownership domains (we explain domain links and give examples in $ection 2.3.2).

Graphically, our visualization uses a white-filled rectangle with a dashed border to represent
an ownership domain. We also label each rectangle with the domain name.

Annotation syntax. This dissertation often uses a simplified annotation syntax that extends
the language (Fid. 2.5). The syntax is similar to the one used by the formal systerin (Fig. 3.1,
Pagé 717) with one difference. The annotation syntax emphasizes the semantic difference between
the owner domain of an object and its domain parameters, whereas the formal system treats the
first domain parameter of a class as its owning domain.
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interface Listener {
}
class BaseChart<M> // Declare domain parameter M
implements Listener {
domain OWNED; // Declare protected domatin OWNED
// Outer OWNED annotation is for the list object
// List has domain parameter ELTS for its elements
// Nested inner M annotation is bound to List’s ELTS for the list elements
OWNED List<M Listener> listeners = new List<M Listener>();

// A public method CANNOT return a reference to an object in a private domain
// So the following lines of code are commented out on purpose

// public OWNED List<Listener> getListeners() {

// return listeners;

//}

class BarChart<M> extends BaseChart<M> {
¥
class PieChart<M> extends BaseChart<M> {
}
class Model<V> implements Listener {
domain OWNED;
// Inner annotation V is for the list elements
OWNED List<V Listener> listeners = new List<V Listener>();

}
class Main {
domain DOCUMENT, VIEW; // Top-level domains
// Bind domatin parameter V to actual domatin VIEW
DOCUMENT Model<VIEW> model = new Model<VIEW>();
VIEW BarChart<DOCUMENT> barChart = new BarChart<DOCUMENT>() ;
VIEW PieChart<DOCUMENT> pieChart = new PieChart<DOCUMENT>() ;

Figure 2.4: Listeners: code with annotations.

Concrete annotation language. The concrete annotation system and tools use existing lan-
guage support for annotations, which tends to be verbose[(Fig. 2.6). Apfdehdix A has more
details on the concrete annotation language as well as examples in that language.

Code examples. In addition, we simplified the code snippets included in this document to show
only class and field declarations with their annotations, and ignore Java language features such
as methods, generic types, and casts.

Domain names. A developer typically chooses domain names that convey some architectural
intent, such aBOCUMENT or VIEW. In this document, | often show domain names in capital letters

to distinguish them from other program identifiers, since most coding conventions discourage
the use of all capital letters for non-constants.
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Figure 2.5: Simplified annotation syntax. Adapted from the formal system (Eid. 3.1, Pdge 77). We
excluded domain links for simplicity.

©@Domains ({"OWNED"})
@DomainParams ({"M"})
abstract class BaseChart implements Listener {
ODomain ("OWNED<M>") List<Listener> listeners = new List<Listener>();
+
©@Domains ({"OWNED"})
@DomainParams ({"M"})
@DomainlInherits({"BaseChart<M>"})
class BarChart extends BaseChart {

}

@Domains ({"DOCUMENT", "VIEW"})
class Main {
©Domain ("DOCUMENT<VIEW>") Model model = new Model();
©Domain ("VIEW<DOCUMENT>") BarChart barChart = new BarChart();

public static void main(@omain("lent[shared]")Stringl[] args) {
@Domain("lent") Main system = new Main();
}

}
Figure 2.6: Listeners: code with the concrete annotations.

Declaring adomain. Each class can declare one or more domains to hold the objects that make
its parts, thus supporting hierarchy. A domain carphgate or public to distinguish between
private or externally-visible state.

Private domains. A private domain, such a8WNED (line [§ in Fig.[Z.4), providestrict en-
capsulation. For instance,public method cannot return an alias to an object inside a private
domain, even though the Java type system allows returning an alias to a field mapked=st=:.
Thus, instance encapsulation is stronger than making a fiejdbeate to restrict its module
visibility. For example, th@isteners collection object insid®arChart is encapsulated. The
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typechecker will produce a warning if | were to define a publietinod inside clasBarChart
that returns an alias tbisteners. A correct implementation of such a method, however, could
return a shallow copy of theist object, to avoid the representation exposure.

Public domains. A public domain provide$ogical encapsulation. Having access to an object
gives the ability to access all the objects inside its public domains. For example, instead of
encapsulating theisteners object by placing it inside the private doma@wNED, | could define
aLISTENERS public domain and placeisteners insideLISTENERS. Then, any object that has
access to darChart object gets the ability to access thésteners instance. | present these
alternate annotations in Section]2.6.

Distinguishing between private and public domains. Graphically, our visualization distin-
guishes between private and public domains, by showing a private domain with a thick dashed
border, and a public domain with a thin dashed border.

Top-level domains. SCHOLIA assumes that the program operates by creating a main object. |
refer to the domains declared by the class of the root object dspHevel domains.

Domain parameters. Domain parameters allow objects to share state and work as follows. An
objectX can access objects in a doma&irof objectY by declaring a formatlomain parameter
on the class oK andbindingthat formal domain parameter to dom&@ras long aslomain link
permissions allowX to acces® (we discuss domain links further in Section 213.2). Wherever
the program instantiates a class that declares domain parameters, the domain parameters must be
bound to other domains that are in scope. Note, the class of the root object declares no domain
parameters. Graphically, our visualization represents a formal domain parameter with a white-
filled rectangle with a dotted border.

For example, clasgarChart needs to access objects in TEEUMENT domain that is declared
in clasMain. SoBarChart declares a domain paramelgtine[3). When clasHain declares an
object of typeBarChart, it bindsBarChart’s domain parameterto its locally declared domain,
DOCUMENT (line[30), so that 8arChart instance can refer to other objects insid€UMENT such
asmodel.

Domain parameters must also be bound to account for inheritance. For exBaselehart
takes a domain parametéerSo each subclass BéseChart, such a8arChart andPieChart,
binds its domain paramet#ito BaseChart’s M domain parameter (lin€si7.119).

Why domain parameters? | glossed over whpaseChart, BarChart, PieChart andModel
required domain parameters (Fig.12.4). They do, because they dlligsavhich is part of the
Java standard library (Fig._2.7). Recall, here welisg as if it were a a concrete class such as
ArrayList.

Library code is often parametric with respect to application components. For example, the
List class is parametric in two ways. Firstist is parametric in the type of the element stored
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// T is generic type parameter
// ELTS <s a domain parameter for the list elements
class List<ELTS T> {
private domain OWNED; // Private domain
// Place the list’s representation in a private domain
OWNED Object[] rep;

// A list has virtual references to the elements it holds.
// A virtual field declaration can simulate that.
ELTS T obj;

Figure 2.7: ClassList is parametric in the ownership domain of its elements.

in the list, hence th& type parameterList also takes a formal domain parame&xTs (line
[3), that specifies the domain of the elements stored in thie list
Back in the Listeners example (Fig. 2.4), the o&ED annotation, inside cla&rChart,
is for theList instance itself (lin€l9). The innérannotation binds the formal domain parameter
ELTS to BarChart’s domain parametef (line[d), to allow thel.ist to access objects insidie

Why ownership domains? ScHOLIA adopts ownership domains because of the expressive-
ness of the type system, and its suitability for representing architectural intent in code. In prin-
ciple, SCHOLIA could use an ownership type system that assumes a singtextper object
dQ_ILke_el_ail_l9_98). However, having multiple domains per object is often useful for modeling
architectural runtime tiers.

In addition, ownership domains have a crucial expressiveness advantage that can reduce the
number of objects in the top-level domains in an extracted architecture. In an owner-as-dominator
type system, any access to a child object must go through its owning dbje_cl_(glatﬂe_elhl. 1998).
In contrast, the ownership domain type system supports pushing Elmqstobject under-
neath any other object in the ownership hierarchy. A child object may or may not be encap-
sulated by its parent object: a child object can still be referenced from outside its owner if it
is part of a public domain of its parent, or if a domain parameter is linked to a private domain

' s 2004).

If making an object owned by another object restricts access to the owned object, then adding
annotations to existing code, after the fact, would force more objects to be peers, and thus lead to
more cluttered object graphs. On the other hand, usigigal containmentith public domains
is more flexible than thsetrict encapsulatiomf private domains, and can also reduce the number
of objects in the top-level domains.

Owner-as-dominator. Still, ownership domains can also enforce the strict owner-as-dominator
discipline found in other ownership type systems. To fully encapsulate an object, a developer can
declare an object reference in a domain that satisfies the following conditions: (a) the domain

3Typically, we annotate theist class to take a single domain parameter to store the list's elements, which
means that all the objects referenced hyiat object are in the same domain.
4A well-formed ownership relation cannot have cycles.
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class Sequence<ELTS> assumes OWNER -> ELTS {
domain OWNED; // Priwvate domain
public domain ITERS;
link OWNED -> ELTS;
link ITERS -> ELTS, ITERS -> OWNED;

private OWNED Cons<ELTS> head;

public void add(ELTS Object o) {
head = new Cons<ELTS>(o,head);
}

public ITERS Iterator<ELTS> getIter() {
return new Sequencelterator<ELTS, OWNED>(head) ;
}
}

class Cons<ELTS> assumes OWNER -> ELTS {
ELTS Object obj;
OWNER Cons<ELTS> next;

Cons (ELTS Object obj, OWNER Cons<ELTS> next) {
this.obj=obj; this.next=next;
}
}
Figure 2.8: Sequence abstract data type with ownership domains.

is private; and (b) there is no domain link from any of the formal domain parameters of the

declaring class to therivate domain (Aldrich and Chambers 2004). Placing an objenside

such a domain fully encapsulates

2.3.2 Permission Annotations

Objects within a single ownership domain can refer to one another, but references can only cross
domains if the programmer specifiesddamain linkbetween the two domains when they are
created|(Aldrich and Chambers 2004). A domain link is a policy that an object can declare to
describe the permitted aliasing among objects in its internal domains, and between its internal
domains and external domains. Ownership domains support two kinds of policy specifications:

* A domain link from one domain to another, denoted with a dashed arrow in the diagram,

allows objects in the first domain to access objects in the second domain;

* A domain can be declared public. Permission to access an object automatically implies

permission to access its public domains.

For exampleSequence uses a linked list as its internal representation. So it places those
Cons objects in the privat@WNED domain (Fig[Z.B).Sequence also defines a public domain,
ITERS, to holds the iterator objects. A domain link from th@ERS domain to theOWNED do-
main allows those iterator objects to access the list’'s representation @WNEB domain. Both
domainsITERS andOWNED can access the domain paramelierS. TheITERS domain is public,
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Figure 2.9: A conceptual view of th8equence abstract data type. Dashed edges represent link permis-
sions between domains.

allowing clients to access the iterators. But tWED domain is private, so outside objects can-
not directly access théons objects. Instead, the clients must access the elementsegfi@nce

object through its iterator interface rather than traversing the linked list directly. A graphical
representation of the domains and the domain links is in[Eig). 2.9. Graphically, our visualization
represents a domain link between two ownership domains with a dashed edge.

In addition to the explicit policy specifications mentioned above, the following policy speci-
fications are implicit:

1. An object has permission to access other objects in the same domain;

2. An object has permission to access objects in all of the domains that it declares.

The first rule allows the differertfons objects in the linked list to access each other, while the
second rule allows the sequence to access its iterators and linked list. Any reference not explicitly
permitted by one of these rules is prohibited, according to the principle of least privilege. It is
crucial that there is no transitive access rule. For example, even though clients can refer to
iterators and iterators can refer to the linked list, clients cannot access the linked list directly
because the sequence has not given them permission to accé&s®Ebedomain. Thus, the
policy specifications allow developers to specify that some objects are an internal part of an
abstract data type’s representation, and the typechecker enforces the policy, ensuring that this
representation is not exposed.

2.3.3 Special Annotations

Several special annotations add expressiveness to the type system, and can be considered as spe-
cial domains that need not be explicitly declared (Aldrich et al. 2002c; Aldrich and Chambers
2004). These special annotations can be also bound to formal domain parameters. In Sec-
tion[2.5.1, we discuss how the object graph handles these special annotations.
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// Implicit OWNER parameter
class Model<V> implements Listener {

3

class Main {
domain DOCUMENT, VIEW;
// Model: :0OWNER ts bound to Main::DOCUMENT
DOCUMENT Model<VIEW> model;

}
// vs. explicit OWNER parameter
class Model<OWNER, V> implements Listener {

}

class Main {
domain DOCUMENT, VIEW;
// Model::0WNER is bound to Main::DOCUMENT
Model<DOCUMENT, VIEW> model;

Figure 2.10: Listeners: using thewNER keyword.

2.3.3.1 OWNER

Each class has an implicit domain parameter that need not be declared and iQW&RRed he
OWNER implicit parameter always occurs as the first element in the list of domain parameters of a
class. FiglZ.70 shows equivalent annotations that make the ingieiRr parameter explicit.

2.3.3.2 shared

Objects can be marked with tBaared annotation to indicate that they may be aliased globally.
But shared references may not alias non-shareeferences. Typicallyshared references are
needed for static fields, all of which may refer to aliases that are not related to any object instance.
In most cases, the use of static fields is discouraged. In general, the slseredl is under the
control of the developer, and she could avoid usingred altogether, sincehared is mainly
designed to inter-operate with legacy code or third-party libraries. We often usasnilred
annotation for immutable objects lilgzring objects.

Neverthelessshared introduces a gap in reasoning about communication integrity. It is not
the only one, however. For instance, calls to native methods are another. As a result, external
coding guidelines may be needed to discourage the liberal use siisfred annotation.

2.3.3.3 unique

The annotatiomnique indicates an object to which there is only one reference, such as a newly
created object. An object markedique can be passed linearly from one domain to another.
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2.3.3.4 lent

One ownership domain can temporarily lend an object to another domain and ensure that the
second domain does not create a persistent reference to the object, e.g., by storing it in a field.
Such an object has the annotatiomt.

2.4 Static Analysis

A static analysis extracts from an annotated progragtobal object graph that uses object hier-
archy to convey architectural abstraction. | explain the static analysis by discussing the following
representations of an object-oriented program:
* The Type Graph o Graph (SectioiZ.411) represents the type structure, and is similar to
a class diagram, enhanced with information about the ownership domain annotations;
* The Object Graph 0®Graph (Sectiof 2.4.R) represents the object structure and is similar
to an object diagram;
* The Display Graph obGraph (Sectior 2.4.13) is the object graph with which the developer
interacts, to control the abstraction by ownership hierarchy and by types, as well as the
level of visual detalil.

2.4.1 Type Graph

The Type Graph of Graph represents the type structure of the objects that the code manipulates.

A type graph can be considered a kind of UML class diagram that also shows ownership domain
annotations, including formal domain parameters. One can build a Type Graph using an im-
plementation of the Visitor design pattekn_(ﬁamma_HLa.LJ1994, p. 331), to traverse the Abstract
Syntax Tree (AST) of an annotated program (Fig. 2.11(a)).

In the type graph, a type declared in the program has domains declared in it. Each local or
formal domain declaration has field declarations. In turn, a field declaration has a declared type.
But because these types are shared, the type graph is non-hierarchical.

Fig.[212 shows the type graph for the Listeners system. A white-filled solid-border box
represents a type. A white-filled dotted-border box represents a formal domain parameter, e.g.,
M, declared inside a type. A white-filled dashed-border box represents an actual domain, e.g.,
DOCUMENT. A grey-filled box represents a field declaration inside a domain. A thick dotted edge
represents a type relationship. A solid edge represents a field reference.

A type graph is inadequate as a runtime architecture for the following reasons.

Atype graph does not show a hierarchy of objects and domains. In a type graph, a field dec-
laration does not have children objects. Rather, a field declaration has a type, a type has domains,
and a domain has other field declarations. For example, the field declasatiOinart has type
BarChart, and the typeBarChart has the formal domain parametemland the actual domain
OWNED. In turn, the domain declarati@WNED contains the field declaratidristeners. Thus, in

a type graph, one cannot view the children of an object without going through its declared type.
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(@) Type Graph (Graph). (b) Object Graph (Graph).

(c) Display Graph (&raph).

Figure 2.11: Relation between Type Graph, Object Graph and Display Graph.
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A type graph does not reflect possible aliasing. The ownership domain type system guaran-
tees that two objects in different domains can never alias. But two objects of compatible types, in
the same domain, may alias. E.g.D@CUMENT has a field declaratiobstnr of typeListener,

it may refer to the same object as the field declaratiodel of typeModel, becauselodel is a
subtype ofListener.

If two objects may alias, an object graph conservatively shows them as one. In general,
merging objects based on only the aliasing precision provided by the ownership domain type
system could yield imprecise results. For example, one could use an intra-domain alias analysis
to better approximate the set of objects that may alias at runtime. But experience in applying
the analysis on real object-oriented code confirms that the annotations give more than enough
precision about aliasing, as long as most object references are declared—or instantiated—uwith
precise types, instead gfva.lang.0bject (Sectiof2.4.312 (Pagels9) discusses the difference
between using declarations and object allocations). In fact, in most object graphs, one may need
to further abstract objects in a domain, based on their declared types ($ectiod 2.4.3[2] Page 59).

In practice, to avoid merging all objects in a domain that have a raw type sudts&$ we
suggest but do not require refactoring the code to use a generic tyde, ssaystring>.

In a type graph, a domain declaration does not directly show all the objects that are in a
given domain. The type graph contains field declarations only for the locally declared fields.
For instance, the typkist<Listener> declares itobj:Listener field in the ELTS domain
parameter onist. Such fields do not appear where the actual domain is declared. Hence, in the
type graph, the formal domain parametensideBarChart is empty, even though it is bound to
theELTS onList (Fig.[2.12).

A type graph shows formal domain parameters, which do not exist at runtime. Parametric

library code often creates interesting architectural relationships in application objects, when these
parameters are bound to the specific domains on specific objects created by the application at
runtime. So, a static analysis must resolve these parameters to ensure that the relevant object
relations appear at the level of the global application object structures.

2.4.2 Object Graph

The analysis computes an Object Grapl®éiraph, which soundly approximates any true Run-
time Object Graph (ROG) (Fi§. 2.11{b)). AdGraph is a graph with two types of nodeS0b-
jects andODomains. Edges betwee@Objects correspond to field reference points-to relations.
The root of the graph is a top-lev@Domain. For now, assume that the nodes form a hierﬁchy
where eaclOObject node has a unique pare@Domain, and eachODomain node a unique
parentOObject (Fig.[2.13). We will refine later th®Domain andOObject data types.

SGeneric types were introduced to Java as of version 1.5. Raw types are still part of Java, mostly for backwards
compatibility with earlier code bases. We believe that most older Java code is being migrated to use generic types.
Indeed, refactoring to generics has mature tool support in Eclipse (Fuhrér et al. 2005). So the overall trend is for
more precise declared types in Java code.

8n fact, a graph oDDomains andOObjects can have cycles, as we discuss in Se¢fion 214.2.3.
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Figure 2.12: Listenerstype graph.
G € OGraph = (Objects= {O...}, Domains= {D ...}, Edges={FE...})
= (PtO, PtD, PtE)
D € ODomain := (1d = Dy, Parent = 0,4, Domain = d )
= ( Dzda Ozd7 d )
O € 0O0bject = (Id = Oy, Parent= D,,, Type = C')
= ( id>y Dzd7 C )
E € OEdge := ( From = O, Field = f, To = Oy )
= ( Osr(‘a f Odst )

Figure 2.13: Initial data type declarations for tti@Graph. The formal to actual bindings are not shown.

2.4.2.1 Overview

At a high level, the analysis distinguishes between objects in different domains, and abstracts
objects to pairs of domains and types. The analysis adopts the following approach to possi-
ble aliasing: in a given domain, two field declarations with compatible types are merged. The
analysis also substitutes actual domains to formal domain parameters. To do so, the analysis
maintains a set of formal to actual bindings (not shown in[Fig.]2.13). Finally, the analysis adds
edges between objects.

Object merging. Different executions may generate a different number of objects at runtime,
for instance oBarChart objects. But the static object graph must represent all possible execu-
tions. To address this, the object graph abstracts multiple runtime objects with a canonical object.
Further, exactly one canonical object in the object graph represents each object in a ROG.
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class Main {
domain DOCUMENT, VIEW;

DOCUMENT Model<VIEW> modell = new Model<VIEW>();
DOCUMENT Model<VIEW> model2 = new Model<VIEW>();

VIEW Model<DOCUMENT> model3 = new Model<DOCUMENT>();
model3 = modell; // Illegal assignment

DOCUMENT Model<DOCUMENT> model4 = new Model<DOCUMENT>() ;
model4 = modell; // Illegal assignment

Figure 2.14: Listeners: possible aliasing.

Object aliasing. The object graph maintains an aliasing invariant, i.e., no one runtime object
appears as two different canonical objects in the graph. To enforce this invariant, the analysis
relies on the ownership domain annotations that give some precision about aliasing, without
requiring an alias analysis. The type system guarantees that two objects in different domains
cannot alias. But two objects in the same domain may alias. So, the analysis merges two field
declarationsn the same domain, if their types are related by inheritance.

For example, consider the following variation on the Listeners example [(Fig. 2.14). The
OGraph represents the two object allocatiofngle1 1 andmodel?2 in the same domaiDOCUMENT
into oneOObject. On the other hand, the analysis creates a sep@@bgect for model3 since
it is in the different domaivIEW.

Althoughmodel4 is also of typeModel and is in theDOCUMENT domain, it takes different
domain parameters thatvdell or model2. Indeed, the type system prevents the assignment
of model4 to modell, and vice versa, i.e., these two may not alias. So, the analysis creates a
separat®Object for model4 and does not reuse the one f@dell or model2.

Domain parameters. Formal domain parameters do not exist at runtime. As a result, the
OGraph does not have formal domain parameters. InsteadDtheph shows arOObject that

the program declares in a formal domain in the corresponding adfdainain that the formal
domain parameter is bound to, starting from the root object. This is important for soundness,
because each runtime object that is actually in a domain at runtime must appear in that domain in
the object graph. Itis as if the analygislls objects declared inside a formal domain parameter
into each actual domain that is bound to the formal domain paraﬁneter

2.4.2.2 Abstract interpretation

The static analysis abstractly interprets the program to produc®®@gects, ODomains, and
OEdges in theOGraph (Fig.[2.13). The analysis distinguishes between different instances of the
same class that are in different domains. In addition, the analysis maintains a mapping from
formal domain parameters to the representatives iOtheph. For reasons we discuss later, the

"Previous formalizations of the object graph extraction static analysis accounted for formal domain parameters

using an explicit pulling (Abi-Antoun and Aldrich 2007b, 2009a).
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analysis generates @&0bject in the OGraph when it encounters an object allocation expression,
i.e.,new expression, rather than a variable or field declaration.

Notation. In the following discussion, we use the following notation, to fully qualify objects
and domains:

* 0obj.DOM refers to either a public or a private domalhOM inside objectobj, e.g.,
main.DOCUMENT. It effectively treats a domain as a field of an object;

* 0bj1.DOM.obj2 refers to the objectobj2 inside the domain DOM, e.g.,
main.DOCUMENT .model,;

* fobj....DOM refers to a public domain. The ownership domain type system allows path-
dependent annotations that are of the feyl.obj2. . .DOM, whereobj1, obj2, ..., are
chains of final fields or variables, amdV is a public domain declared on the type of the
last object in the path;

* (::d refers to a domaid qualified by the clas€’ that declares it.

Example. On the Listeners example, the analysis works as follows [Fig] 2.15). First, the user
selects a root type, in this case, the clssn. The analysis creates &0Object (OO0) for the root
object allocation. Then, it analyzes the cléissn in the context of th€ OObject) (OO0).

In doing so, the analysis creates t@®omains for the two domain®0CUMENT and VIEW
thatMain declares, D1 and D2, respectively. For the object allocations insithe, the analysis
creates twdObjects barChart (O1) andpieChart (O2) insideVIEW, and anOObject model
insideDOCUMENT (O3). Because of the field references, the analysis also ci@atiges from
the current objeatiain to the newly created objects, E1, E2, and E3.

The analysis then interprets the allocation &aaChart object, by binding the formal do-
main parameteBarChart::M to D1.

In Fig.[2.16, the analysis analyzes the cl@asChart and its superclasBaseChart in
the context of theOObject barChart and the bindings of formal to actual domains, e.g.,
that the formal domain paramet#ris bound to theODomain main.DOCUMENT. While an-
alyzing BaseChart, the analysis creates @Domain for OWNED (D3), and anOObject for
List<Listener> (O4).

ClassBaseChart declares alisteners field in domainOWNED. So the analysis adds an
OEdge (E4) from barChart to listeners inside itSOWNED domain. Note for example that
analysis does not add an edge froarChart to listeners insidepieChart.

Next, the analysis analyzes the cldssst<Listener> in the context of theOObject
listeners and the bindings in scope. When interpreting the virtual field declaration inside
List, the analysis looks up all th@Objects in the domaimain.DOCUMENT the types of which
are subtypes ofistener. For instance, the analysis fin@©bject model. So, it creates an
OEdge from the OObject corresponding to the curreiObject listeners to that OObject
(E5). Note that the analysis does not add an edge frar@hart’s 1isteners to pieChart in
VIEW, even thougtPieChart also implements theistener interface. As a result, the edges in
an OOG are more precise than super-imposing associations from a class diagram.

The analysis oPieChart, its superclasBaseChart, andList is similar to that oBarChart
andBaseChart, and is not shown.
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In Fig.[2.17, the analysis processes the cls#el in the context of theDObject model.
The analysis creates &@Domain for OWNED (D4), anOObject for List<Listener> (O5), and
an OEdge (E6), then analyzes the object allocationlakteners. The analysis then processes
the clasd.ist in the context of th&Object main.DOCUMENT .model .OWNED. listeners. The
analysis looks up an@Object of typeListener in the domaimain.VIEW, and finds two such
OObjects. So it adds a®WEdge from the OObject listeners to barChart (E7), and another
from listeners to pieChart (ES8).

The final object graph for listeners is in Fig. 2.18. The root object of an OOG is often an
instance of a class that declares the top-level domains and the objects inside them. For readability,
we sometimes elide the root domain and the root object from an OOG and consider the domains
inside the root type as the top-level domains (Eig.2.19).
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21

’OObject(main, NULL, Main)‘

Main main = new Main();

’ analyze(main, [J) ‘

class Main {
domain DOCUMENT, VIEW;

| ODomain (DOCUMENT, main) | (D1)

| ODomain (VIEW, main) | (D2)

’OObject(main.VIEW.barChart, main.VIEW, BarChart) | (01)

’OEdge(main, main.VIEW.barChart) ‘ (E1D)

VIEW BarChart<DOCUMENT> barChart = new BarChart<DOCUMENT>();
analyze(barChart, [BarChart::M +— main.DOCUMENT, BarChart::OWNER — main.VIEW])

OObject(main.VIEW.pieChart, main.VIEW, PieChart) | (02)

’OEdge(main, main.VIEW.pieChart) | (E2)
VIEW PieChart<DOCUMENT> pieChart = new PieChart<DOCUMENT>() ;
’analyze(pieChart, [PieChart::M + main.DOCUMENT, PieChart::OWNER + main.VIEW])

| OObject (main . DOCUMENT .model, main.DOCUMENT, Model) | (03)

’OEdge(main, main.DOCUMENT.model) | (E3)
DOCUMENT Model<VIEW> model = new Model<VIEW>();
’analyze(model, [Model::V + main.VIEW, Model::OWNER + main.DOCUMENT])

Figure 2.15: Abstractly interpreting the program, starting with the root chesin.
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[this ~— main.VIEW.barChart |
’ [BarChart::M + main.DOCUMENT, BarChart::OWNER + main.VIEW]
class BarChart<M> extends BaseChart<M> {
’analyze(barChart, [BaseChart::M + main.DOCUMENT, BaseChart::OWNER ~ main.VIEW])
}
[this ~ main.VIEW.barChart |
’ [BaseChart::M +— main.DOCUMENT, BaseChart::0WNER +—> main.VIEW]

class BaseChart<M> implements Listener {
domain OWNED;

’ODomain(DWNED, main.VIEW.barChart) | (D3)
’OObject(main.VIEW.barChart.DWNED.1isteners, main.VIEW.barChart.OWNED, List<Listener>) | (04)

| OEdge (main. VIEW.barChart, main.VIEW.barChart.OWNED.listeners) | (E4)
OWNED List<M Listener> listeners = new List<M Listener>();
’ analyze(main.VIEW.barChart.OWNED.listeners, ‘

’ [List::ELTS +~ main.DOCUMENT, List::OWNER ~— main.VIEW.barChart.DWNED])‘

}
[this ~— main.VIEW.barChart.OWNED.listeners |

’ [List::ELTS ~ main.DOCUMENT, List::OWNER + main.VIEW.barChart.OWNED] ‘

class List<ELTS T> {
’OObject(main.DOCUMENT.model, main.DOCUMENT, Model) € lookup(main.DOCUMENT, Listener)

’ OEdge(main.VIEW.barChart.OWNED.listeners, main.DOCUMENT.model) ‘ (E5)

ELTS T obj;
}

Figure 2.16: Abstractly interpreting the program (continue8}rChart, BaseChart andList.
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main:
Main

1
listeners: :

> List<Listener> I
I

I

I
I
I I listeners: ! ) i
: 1| List<Listener> JL:r_|> %_e(éhharti
- e ar
| (E6) v (05) {
Il model: ~ ! :'
|| Model ~4__ _OWNED (D) ! ;]
I ppe—— I
| DOCUMENT h VIEW

1 [this + main.DOCUMENT.model |
2 | [Model:V ~ main.VIEW, Model:OWNER — main.DOCUMENT]

3 class Model<V> implements Listener {
4 domain OWNED;

5 ’ ODomain (OWNED, main.DOCUMENT.model) | (D4)

6 ’ OObject (main.DOCUMENT .model.OWNED.listeners, main.DOCUMENT.model.OWNED, List<Listener>) | (05)
7 ’ OEdge (main.DOCUMENT .model, main.DOCUMENT.model.OWNED.listeners) ‘ (E6)

8 OWNED List<V Listener> listeners = new List<V Listener>();

9 ’ analyze(main.DOCUMENT .model.OWNED.listeners, ‘

10 ’ [List::ELTS +~ main.VIEW, List::OWNER ~ main.DOCUMENT.model.OWNED]) ‘
1}

12 |this ~ main.DOCUMENT.model.OWNED.listeners |

12 | [List:ELTS — main.VIEW, List:OWNER — main.DOCUMENT.model.OWNED] |

1w [T = Listener]

15 class List<ELTS T> {
16 ’OObject(main.VIEW.barChart, main.VIEW, BarChart) € lookup(main.VIEW, Listener)‘

17 ’OEdge( main.DOCUMENT .model.OWNED.listeners, main.VIEw.barChart)‘ (E7)
18

19 OObject(main.VIEW.pieChart, main.VIEW, PieChart) € lookup(main.VIEW, Listener) ‘

20 OEdge( main.DOCUMENT.model.OWNED.listeners, main.VIEW.pieChart)‘ (E8)

21 ELTS T obj;
2 }

Figure 2.17: Abstractly interpreting the program (continuetiydel andList.
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Figure 2.18: Listeners: full object graph, including the root object.
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Figure 2.19: Listeners: object graph without the root object and edges from the root.
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class Main {

domain OWNED;

QuadTree<OWNED> aQT = new QuadTree<OWNED>();
}
class QuadTree<M> {

domain OWNED;

QuadTree<M> nwQT = new QuadTree<M>();

}
Figure 2.20: QuadTree with annotations.

2.4.2.3 Recursion

The analysis must handle recursive types which can lealG@mnph to grow arbitrarily deep.

For example, consider a clagsadTree, which declares fields of typguadTree in its OWNED
domain (Fig[2.200). On thguadTree example, the abstract interpretation discussed above would
not terminate (Fid._2.21), as it would keep generating 0&bjects andODomains.

Recursive types. To get a finiteOGraph and ensure the analysis terminates, the analysis could
stop expanding a®@Graph after a certain depth. However, merely truncating the recursion may
fail to reveal relations when child objects point to external objects, and the child objects are
beyond the visible depth. Instead, the analysis creates a cycle@Geaph when it reaches a
similar context. There are two possible choices (Eig.12.22).

The first choice is tainify objects. For instance, F[g. 2.22(b) shows the resu@i@gaph for
theQuadTree example. InsidawQT, theOWNED domain refers back to the sameQT OObject.

The second choice is tmify domains. For instance, Fig. 2.22(c) shows the resuliagph
for the same example. TIWNED domain insideaxwQT is the same as the one insiagT.

We discuss each choice in turn, and why we chose to unify domains in the end.

Unifying objects. Any sound solution to the problem must attempt to always create objects
until it detects that it is creating a similar object to one it created before. In that case, the analysis
just uses the existing similar object. One can imagine multiple notions of similarity; it can be
any equivalence relation, as long as the number of dissimilar objects is finite. For example, one
could adopt the following similarity relation between two objedtand B if:

1. AandB are of the same type, including actual domain parameters;

2. A andB came from the same source domadifnot ODomain D — two objects in different

d’'s may end up, after formal to actual substitution, in the sdme

3. A andB are below a depth threshold and

4. A andB are transitively inside the same object that is at depth threghold

The third condition ensures that the analysis does not unify two objects if one of them is
above the threshold, and the fourth condition ensures that the analysis does not add accidental
lifted edges by crossing graph boundaries.

When the analysis does not create an object because it is similar, it still recursively calls the
analysis function (analyzpon the existing object, because the newly created object could have
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Main main = new Main();

OObject(main, null, Main) ‘

analyze (main, [])‘

’this — main‘
class Main {
domain OWNED;

ODomain(main.0OWNED, main)‘

OObject (main.OWNED.aQT, main.OWNED, QuadTree)‘
QuadTree<OWNED> aQT = new QuadTree<OWNED>();

| OEdge(main, main.OWNED.aQT) |
’analyze(main.DWNED.aQT, [QuadTree::M — main.DWNED])‘

}
this ~ main.OWNED.aQT \

[QuadTree:M — main.OWNED]‘

class QuadTree<M> {
domain OWNED;

| ODomain (main.OWNED.aQT.OWNED, main.OWNED.aQT) |
’OCNﬂedeain.OWNED.aQT.UWNED.anT, main.0OWNED.aQT.OWNED, QuadTree)‘
’OEdge(main.OWNED.aQT, main.OWNED.aQT.OWNED.anT)‘

QuadTree<M> nwQT = new QuadTree<M>();
’analyze(main.DWNED.aQT.OWNED.nWQT, [QuadTree::M +— main.OWNED])‘

}
[this ~— main.OWNED.aQT.OWNED.nwQT |
’[QuadTree:M — main.OWNED]‘

class QuadTree<M> {
domain OWNED,

’()Donuﬁn(main.OWNED.aQT.OWNED.nWQT.OWNED, main.OWNED.aQT.OWNED.nWQT)‘

OObject(main.0OWNED. aQT.OWNED.nwQT.OWNED.nwQT, main.OWNED.aQT.OWNED.nwQT.OWNED, QuadTree)

OEdge(main.OWNED.aQT.OWNED.nwQ, main.OWNED.aQT.OWNED.nwQT.OWNED.nwQT) ‘
QuadTree<M> nwQT = new QuadTree<M>();
analyze (main.OWNED.aQT.OWNED.nwQT.OWNED.nwQT, [QuadTree:M — main.OWNED])‘

}

Figure 2.21: QuadTree abstract interpretation without cycle detection.

different domain parameters compared to the previous ones, so the recursive call could produce
new edges, even ones that show up above the threshold.

However, unifying objects is problematic. To identify similar objects, it is necessary to de-
tect they have the same owniiomain. If an ODomain has a unique ownin@Object, this
becomes circular. Moreover, in order to add edges, we lookup objects in a given domain by their
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Figure 2.22: Handling the recursion iQuadTree.

type. Since recognizing domains is important, we adopted the solution of unifying domains.

Unifying domains. Instead, unifying domains is less problematic, because it is simpler to rec-
ognize when tw@®Domains have the same underlying domain declaration

The analysis creates a cycle in t@&raph when the sam@®Domain appears as the child of
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D € ODomain == (ld = D;g, Domain= C::d )
= (Djg, C::d)

Figure 2.23: Revised data type declaration ©©Domain. OObject andOEdge are unchanged.

two OObjects. This justifies ar©ODomain not having a unique ownin®Object, and revising
accordingly the data type declaration for @Pomain (Fig.[2.23). We now qualify a domaiih
by the class” that declares it, for exampl®ain::DOCUMENT. With the revised data structures,
the abstract interpretation QiadTree example now terminates (Fig._2]24).

2.4.2.4 Domain parameters

Recall, the analysis distinguishes between different instances of the same class that are in differ-
ent domains. We now increase the precision of the analysis and distinguish between instances of
the same class in the same domain, that have different actual domain parameters.

Consider a variation on the Listeners example (Eig.]2.25). If we consider thiat sheclass
takes a domain parameter for its owning domaitNER, and another for the list elemeng,TS,
thenList has typeList<OWNER, ELTS T>. We want the analysis to distinguish between two
List object allocations with different actual domains passed irDfdIER or ELTS (Fig.[2.26).
In Chaptei B, we extend the current data type declarations[(Eid. 2.23), and additionally include,
in anOObject, the actual domain parametdbps rather than just the owning domain.

2.4.3 Display Graph

We often do not display aBGraph directly but instead unfold it as@isplay Graph or DGraph
(Fig.[2.11(c)). TheDGraph is the object graph that the tool displays to a developer, and with
which the developer interacts.

2.4.3.1 Depth limiting

An OGraph can have cycles. SoGraph displays arOGraph by unfolding it to a user-specified
depth (Fig[2.2l7). Increasing the unfolding depth displays more objects. Decreasing the depth
collapses the substructure of objects that are already displayed.

In addition, aDGraph addslifted edg%o account for any edges in tl@Graph below the
unfolding depth, using their nearest visible ancestor objects above the unfolding depth. Lifting
edges is a well-known technique when visualizing hierarchical represent&tigns (Fahmy and Holt

).

For instance, for thQuadTree example, our visualization shows of@adTree object within

another, down to a finite depth (See Kig. 2.28).

8Definition of edge lifting: If nodex has an edge to nodg andz is a descendant d?X andy is a descendant
of PY, then we lift the edgéz, y) to (PX, PY) only if PX andPY are distinct nodes anflX is not a descendant
or ancestor ofPY".
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Main main = new Main();
OObject (main, null, Main) |

analyze(main, [])‘

this — main‘
class Main {
domain OWNED;

| ODomain (main.OWNED, Main::OWNED) |
’OCHﬂai(main.OWNED.aQT, main.OWNED, QuadTree)‘
QuadTree<OWNED> aQT = new QuadTree<OWNED>();
] OEdge (main, main.OWNED.aQT) \
’anulyze(main.OWNED.aQT, [QuadTree:M — MainxOWNED])‘
}
|this ~— main.OWNED.aQT|
| [QuadTree::M — Main::OWNED] |

class QuadTree<M> {
domain OWNED;

| ODomain (main.OWNED.aQT.OWNED, QuadTree: :0OWNED) |
’OCHﬂaI(main.OWNED.aQT.OWNED.nWQT, main.OWNED.aQT.OWNED, QuadTree)
QuadTree<M> nwQT = new QuadTree<M>();

OEdge(main.OWNED.aQT, main.DWNED.aQT.OWNED.nWQT)‘
analyze(main.OWNED.aQT, [QuadTree:M +— QuadTree:OWNED])‘

}
|this — main.OWNED.aQT.OWNED.nwQT |

’[QuadTree:M — QuadTreexDWNED]‘

class QuadTree<M> {
domain OWNED;

’()Domam(main.OWNED.aQT.DWNED, QuadTree::0WNED)
] OObject (main.OWNED.aQT . OWNED.nwQT, <main.OWNED.aQT.OWNED, QuadTree) \
QuadTree<M> nwQT = new QuadTree<M>();
| OEdge (main.OWNED. aQT.OWNED.nwQ, main.OWNED.aQT.OWNED.nwQT) |
| analyze (nain.OWNED.aQT, [QuadTree:M — QuadTree::OWNED]) |
}

Figure 2.24: Revised example with recursive types.

In aDGraph that visualizes a@Graph, there are two ways to reduce the level of detail. One is
to restrict the unfolding depth, and another is to expand or collapse the substructures of selected
elements.

Edge lifting due to limited unfolding depth. The limited unfolding depth results in the cre-
ation of lifted edges. In our implementation, the user interactively controls the unfolding depth.
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class Main {
domain OWNED, DOCUMENT, VIEW;

listViews = new List<Main::0WNED, Main::VIEW Listener>();

listModels = new List<Main::0WNED, Main::DOCUMENT Listener>();
}

Figure 2.25: Listeners: distinguishing objects based on domain parameters.

I I

|| barChart: |

| BarChart |

---------- e |
1] I

listViews: Jqul pieChart: I
ArrayList<Listener> 1 PieChart |

I

I

listModels: I——__—__—__—_~
ArrayList<Listener> 1, !
~ |
T4 model |
owned I 1| Model |
---------- C I I
| DOCUMENT |

_ - — - = =

Figure 2.26: Listeners: object graph distinguishing objects based on domain parameters.

Edge lifting due to collapsing substructures. Edge lifting can also occur when the user
expands or collapses individual elements. For examplepairChart’s domain OWNED, a
listeners object refers to aodel object in domairDOCUMENT (Fig.[2.29(d)). If the user re-
duces the unfolding depth, or if she collapsasChart’s substructure, the analysis adds a lifted
edge frombarChart tomodel (Fig.[2.29(D)).

2.4.3.2 Abstraction by types

An OOG provides architectural abstraction primarily by ownership hierarchy. In addition, an
OOG can abstract objects within each domain by their declared types.

In many object-oriented systems, many types extend from common base classes or imple-
ment common interfaces. For instance, bB#rChart andPieChart classes implement the
Listener interface to realize the Observer design pattern.

Declaration-based view. In keeping with the good practice of programming to an interface
instead of an implementation, many field declarations could have interface types. Consider the
following variation on the Listeners system, which also declares affigldr of typeListener

(Fig.[2.30).
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_lentMain___MainDOCUMENTModel_Main__DOCUMENT__Main__VIEW_
_lentMain___MainVIEWBarChart_Main__DOCUMENT__Main__VIEW_
_lentMain___MainVIEWPieChart_Main__DOCUMENT__Main__VIEW_
_lentMain___MainownedArrayList_Listener__Main__VIEW_
_lentMain___MainownedArrayList_Listener__Main__DOCUMENT_

(©)
Figure 2.27: Unfolding anOGraph.
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main: —H= aQT: ——— > nwQT : QuadTree
QuadTree 1 !

~.

barChart L listeners:

listeners:
List<Listener>

1

I

I

I

! I
! I

1

List<Listener> : 1" BarChart :
! I
! I
|

I

listeners: 11| barChart (+):
h
model: ~ : 1
Model v ) OWNED |
p Tmm==m==== |1

VIEW |

(b) Lifted edge between objedarChart andmodel.

Figure 2.29: Listeners: limiting the unfolding depth or hidingirChart’s substructure adds lifted edges.

The referencedarChart, pieChart andlsntr are in the sam&IEW domain. Recall that
both BarChart andPieChart extendBaseChart, andBaseChart implements the.istener
interface. As a result, the analysis merges them into the same object in the object graph.

Instantiation-based view. A key insight, however, is that there are no object creations of
interface types. So the analysis considers only object creation expressions and generates an
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class Main {
domain DOCUMENT, VIEW;

DOCUMENT Model<VIEW> model = new Model<VIEW>();
VIEW BarChart<DOCUMENT> barChart = new BarChart<DOCUMENT>() ;
VIEW PieChart<DOCUMENT> pieChart = new PieChart<DOCUMENT>() ;

VIEW Listener lstnr = null;

Figure 2.30: Listeners: illustration of interfaces causing merging.

Instantiation-Based View (IB‘E) One limitation, however, is that an IBV can be problematic
when some code is not available, because it requires knowledge of all the allocation points of
objects in the program.

Using an IBV, the type graph would not contain a field declaratiotnr of typeListener.
Rather, it would have field declarations foarChart and pieChart of type BarChart and
PieChart, respectively. Then, the object graph would show distireiChart andpieChart
objects, since there is no subtyping relation between their tyg@shart and PieChart,
respectively (Figl’2.31). In most cases, unless otherwise specified, the analysis will use an
Instantiation-Based View.

Abstraction. An Instantiation-Based View (IBV) prevents the excessive merging of objects
in domains, but may reduce the abstraction and lead to clutter in the object graph. Consider
for example the situation where there are many other subclassgstfactChart, such as
LineChart, ColumnChart, ScatterChart andDoughnutChart.

Trivial types. To improve abstraction and reduce clutter, an OOG can merg® @gects in a
givenODomain whenever they share one or more least upper bound (LUB) types. The resulting
object has an intersection type that includes all the least upper bounds.

In Java-like languages, every class inherits frgava.lang.0bject. However, merg-
ing all the OObjects in a domain into a singl®Object of type Object would result in a
sound but uninteresting OOG. So the heuristic does not mef@jgects that have types that
share only trivial types as supertypes. Trivial types are user-configurable and typically include
java.lang.0Object, Cloneable andSerializable from the Java Standard Library. Many
marker interfaces that do not declare any methods, suBhr@®mAccess, are good candidates
to be included in the list.

Applying abstraction by trivial types on the raw Listeners OOG (Eig.]2.31) produces an OOG
that is less cluttered (Fig._2.132). In particular, the OOG now merges all the chart objects in the
VIEW domain into one object, shown as$stener:Listener.

9This is similar to how/(Bacon and Sweefiey 1996) use Rapid Type Analysis (RTA) to determine a method call’'s
receiver during call graph construction. However, RTA alone is insufficient. (Rayside et gl. 2005) proposed a static
object graph analysis based on RTA which produced trivial over-approximations for most programs.

1%For simplicity, | often omit the explicit object allocations in the sample programs included in this document.
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Figure 2.32: Listeners: abstraction by trivial types.

Design intent types. Abstraction by trivial types can quickly unclutter an OOG but is not very
precise. Assume that the developers distinguish between two- and three-dimensional charts in
the type hierarchy, and defineCaart2D and aChart3D interface. Classes such BineChart,
ColumnChart, ScatterChart and DoughnutChart implement aChart2D interface. Other
classes such &ylinderChart andPyramindChart implement the€hart3D interface. Finally,
some classes implement both interfaces (Eig.]2.33).
Similarly, we may want the OOG to distinguish between two- and three-dimensional charts.
In particular, we may want to treat 3D charts as more architecturally significant than 2D charts.
For this purpose, the developer defines a list of design intent types, ordered from most to
least architecturally relevant. For instance, she adds the interfaees$3D and Chart2D to
the list, in that order. When determining the object with which to mergeGBéject for
pieChart:PieChart, the analysis finds the first type in the list of design intent types that is
a supertype ofieChart. For instance, the analysis picsart3D. So it collapses sever@Ob-
jects into aDObject of type Chart3D. Then, the analysis finds the first type in the list of design
intent types that is a supertypeRyframidChart. In this case, the analysis picsart3D again.
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_lentMain_MainVIEWScatterChart
_lentMain_MainDOCUMENTModel
_lentMain_MainVIEWCylinderChart
_lentMain_MainVIEWLineChart
_lentMain_MainVIEWPieChart
_lentMain_MainVIEWDoughnutChart
_lentMain_MainVIEWPyramidChart
_lentMain_MainVIEWColumnChart
_lentMain_MainVIEWBarChart
_lentMain_MainDOCUMENTModel
_lentMain_MainVIEWChart3D
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s
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«interface» -
Chart2D
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[otiect | %

N
interface W
« »
Listener <= - <)/\ :
A
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«interface»
ChartaD -
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AN PyramidChart
CylinderChart

Figure 2.33: Listeners: inheritance hierarchy.
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Figure 2.34: Listeners: abstraction by design intent types.

When the analysis processes the field declaratiordéoghChart : DoughnutChart, it picks
Chart2D. So it creates 80bject of typeChart2D. Similarly, it merges ineChart:LineChart

with Chart2D. Applying abstraction by design intent types to the raw Listeners OOG[(Eid. 2.31)
produces an OOG that conveys the architectural intent of distinguishing between the two kinds
of charts (Fig[.2.34).
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simple.ColumnChart
simple.BaseChart
simple.LineChart
simple.PyramidChart
simple.CylinderChart
simple.BarChart
simple.DoughnutChart
simple.PieChart
simple.ScatterChart
simple.Listener
java.lang.Object
simple.Chart2D
simple.Chart3D
_lentMain_MainVIEWChart3D
_lentMain_MainDOCUMENTModel
_lentMain_MainVIEWChart2D

2.4.4 Summary

An OOG is a graph with two types of nodes, objects and domains. The nodes form a hierarchy
where each object node has a unique parent domain and each domain node has a unique parent
object. The root of the graph is a top-level global domain. There are two edge types. Edges
between objects correspond to field references. Edges between domains correspond to domain
links. Compared to previous definitions of object graphs, eLg_,_(Bo_tIgPLej_aﬂ 1998), an O0OG
explicitly represents clusters of objects using domains and edges between these clusters using
domain links. In contrast to other ownership hierarcPMH?EZb_Qz;_Bolanjﬁ_eLal. 2004),

in an OOG, the owner of an object is a domain instead of another object. The ability to define
multiple domains per object is useful for modeling multiple architectural tiers in an application.

In addition, an OOG supports two forms of hierarchy: strict encapsulation and logical contain-
ment. Previous ownership systems which had multiple contexts per object@ ke 2001),
support only strict encapsulation, which cannot express many object-oriented design idioms. In
contrast, the expressiveness of logical containment makes it easier to both add annotations to
existing code as well as control the architectural abstraction in an object graph.

2.5 Advanced Features

We now discuss several additional features.

2.5.1 Displaying objects with special annotations

Objects that have one of the special annotations (unjideat, or shared) require special
handling.

2.5.1.1 shared objects

The object graph analysis assumes that all objects markenhaagd are in one domain. As a

result, due to merging objects for soundness, the analysis may excessively merge objects that are
in the shared domain. Unless the user requests otherwise, we often purposely do not display
theshared domain in an OOG. Displaying th&hared domain would be trivial, but would add

many uninteresting edges to the OOG. Strictly speaking, excludingthifwesd domain makes

the resulting OOG unsound, but we believe it to be an acceptable compromise.

2.5.1.2 unique objects

An OOG may not reflect an object markedique until it is assigned to a specific domain.
When an object is created, it imique. An inter-procedural flow analysis is needed to track
each object from its creation until its assignment to a specific domain. Since the current tool
does not implement such a flow analysis, a developer must manually annataigua object
returned from a factory method with the domain in which it should be displayed.
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2.5.1.3 1lent objects

Objects annotated withent are currently missing from the OOG. To display them in the OOG,
a flow analysis is needed to determine the domain thana object is really in. Currently, the
workaround is s to manually resolve thent annotation, and to use the more precise annotation.

2.6 Discussion

2.6.1 Assumptions

The STHOLIA extraction static analysis makes the following assumptions:

* Sources available: The program’s whole source code and portions of external libraries
that are in use have annotations that typedEEck

* Single entry point: The program operates by creating a main object.

* Summarized external entities: Reflection, dynamic code loading or native calls may in-
troduce unknown objects and edges into the system. The annotation system can summarize
these external entities using “virtual” or “ghost” (Flanagan et al. 2002) field annotations.
The latter are also useful when the sources are unavailable.

2.6.2 Alternate Annotations

There are multiple ways to annotate a program. [Fig.]2.35 shows an alternate set of annotations
for the Listeners system and the resulting OOG (Eig.]12.36). In these annotatiohssth@ers
collection object are no longer in private domains. This allows a client program to modify the
listeners collection objects directly, which the client could not do if these objects were strictly
encapsulated in private domains.

These annotations make thesteners list objects appear in the top-level domains and
illustrate the potential loss of precision due to merging objects within a domain by their de-
clared types and their domain parameters (in this case, the domain parametetstart and
PieChart are bound to the same domain). For instanceltleners of pieChart and those
of barChart are merged in theIEW domain (Fig[2.36). However, this object graph is still more
precise than a class diagram, which also abstracts objects by type, becauwdgects that are
in two different domains can never be aliased. For instance, the analysis can still distinguish
between th@ isteners of model from those ofpieChart andbarChart.

Moreover, a developer can prevent unwanted merging by placing two objects that should
never get merged in separate domains. For instance, even if a developer does not wish to use
strict encapsulation, she can define public domains, and pladei #eners objects in public
domains (See Fi@. 2.B7). The resulting object graph is in[Fig] 2.38.

The main difference between the OOG in Hig. 2.38 and the one i Fig.]2.3(a) is that, in the
former, LISTENERS domains appear with a thin dashed border, whed®ag8D appears with a

L10ur static analysis is similar to an Andersen-style points-to static analysis (Anflerseén 1994). An object-sensitive
analysis, e.g., (Milanova etlal. 2005), would have this same limitation, because it requires knowledge of all the
allocation points of objects in the program.

66 Chapter 2. Object Graph Extraction



© 00 N o U B~ W N

PR e
N PO

13

interface Listener {

}

class BaseChart<M> implements Listener {

OWNER List<M Listener> listeners;

}

class BarChart<M> extends BaseChart<M> {

}

class PieChart<M> extends BaseChart<M> {

3

class Model<V> implements Listener {
OWNER List<V Listener> listeners;

}

class Main {

domain DOCUMENT, VIEW;

DOCUMENT Model<VIEW> model;

VIEW BarChart<DOCUMENT> barChart;
VIEW PieChart<DOCUMENT> pieChart;

}

Figure 2.35: Listeners: alternate annotations.

barChart:

BarChart
| e

e [

'l model listeners: 1L pieChart: listeners:
'l Model List<Listener> PieChart List<Listener>
|
|

Figure 2.36: Listeners: object graph based on the alternate annotations.

thick dashed border. Recall that a thick dashed border indicate that these instances are owned or
strictly encapsulated by their outer objects. And a thin border indicates logical containment. In
particular, when using logical containment, a developer can define a public method that returns
an alias to a field in a public domain.

For arbitrary object-oriented implementation code, it is easier to use logical containment with
public domains, rather than the strict encapsulation of private domains—and both can reduce the
number of objects in the top-level domains.

2.6. Discussion 67


_lentMain_MainDOCUMENTModel
_lentMain_MainDOCUMENTList_Listener_
_lentMain_MainVIEWBarChart
_lentMain_MainVIEWPieChart
_lentMain_MainVIEWList_Listener_

© 00 N o g~ W N

[ S e T <
© ® N o 0 ~ W N B O

20

interface Listener {

}

class BaseChart<M> implements Listener {
public domain LISTENERS; // Public domain
LISTENERS List<M Listener> listeners;

// A public method can return a reference to an object in a public domain

public LISTENERS List<M Listener> getListeners() {

return listeners;
}
}
class BarChart<M> extends BaseChart<M> {
}
class PieChart<M> extends BaseChart<M> {
}
class Model<V> implements Listener {
public domain LISTENERS; // Public domain
LISTENERS List<V Listener> listeners;
¥

class Main {
domain DOCUMENT, VIEW;
DOCUMENT Model<VIEW> model;
VIEW BarChart<DOCUMENT> barChart;
VIEW PieChart<DOCUMENT> pieChart;
¥

Figure 2.37: Listeners: using public domains.

' [

| listeners: I

| ArrayList<Listener> |
>

model: —T" L '

' [

| listeners: |

pieChart: —% ArrayList<Listener> |
PieChart | |
Pl | / LISTENERS ]
________ A

) |

barChart: L listeners: |
BarChart ArrayList<Listener> |

|

Figure 2.38: Listeners: object graph based on using public domains.
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_lentMain_MainDOCUMENTModel_ModelLISTENERSArrayList_Listener_
_lentMain_MainVIEWPieChart
_lentMain_MainVIEWBarChart
_lentMain_MainDOCUMENTModel
_lentMain_MainVIEWPieChart_PieChartLISTENERSArrayList_Listener_
_lentMain_MainVIEWBarChart_BarChartLISTENERSArrayList_Listener_

2.6.3 Imprecision

The OOG extraction relies on the type system’s guarantee that two objects in different domains
cannot be assigned to each other, and thus can never alias. But two objects in the same do-
main may alias. In the absence of more information about possible aliasing, the analysis can be
imprecise in several cases that we discusdAext

2.6.3.1 Field assignment in superclass

Consider the code in Fig._2.39 and the corresponding OOG i Eig. 2.40. The OOG is imprecise
because it shows an edge freno y, and an edge frorm to z.

In SCHOLIA, a developer can place objects that should not get merged in different domains.
Of course, this assumes that the developer is aware of the analysis’s bias. For instance, in
the above example, the developer adding the annotations can define two ddvigind, and
OWNED2, and placé andc in OWNED1 andOWNED2, respectively (Fig.2.41). Then, the OOG will
not show imprecise edges betweeandy, orb andz (Fig.[2.42).

20ur static analysis is similar to an Andersen-style points-to analysis (Antersen 1994), which has known sources
of imprecision, thabobject-sensitivevariants address _(Milanova et al. 2005). | took these code examples from
(Milanova et all 2005) and annotated them.
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class X {
void n() {
}
}
class Y extends X {
void n() {
}
}
class Z extends X {
void n() {
}
+
class A<P> {
P X £;
AP X xa) {
this.f = xa;
}
}

29
30
31
32
33
34
35
36
37
38
39
0
41
42
43
a4
45

class C<P> extends A<P> {
C(P X xc) {
super (xc) ;
¥
void m() {
lent X xc = this.f;
xc.n();
}
¥

public class Main {
domain OWNED;
OWNED Y y = new YO ;
OWNED Z z = new Z();

OWNED B<OWNED> b = new B(y);
OWNED C<OWNED> ¢ = new C(z);

public void init() {

class B<P> extends A<P> { 46 b.m(Q);
B(P X xb) { 47 c.m();
super (xb) ; 48 }
T 49 public static void main(lent Stringl[shared] args) {
void m() { 50 lent Main system = new Main();
lent X xb = this.f; 51 system.init();
xb.n(); 52 }
} 53}
} . . . . :
Figure 2.39: Field assignment in superclass, adapted fiom (Milanova et all 2005).
Figure 2.40: Imprecision with field assignment in superclass.
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class X {
void n() {
}
}
class Y extends X {
void n() {
}
}
class Z extends X {
void n() {
}
}
class A<P> {
P X £;
AP X xa) {
this.f = xa;
}
}
class B<P> extends A<P> {
B(P X xb) {
super (xb) ;
}
void m() {
lent X xb = this.f;
xb.n();
}

Figure 2.41: Field assignment in superclass, adapted fiom (Milanova et all 2005).

29
30
31
32
33
34
35
36
37
38
39
40
a1
42
43
a4
45
6
a7
48
49
50
51
52
53

class C<P> extends A<P> {
C(P X xc) {
super (xc) ;
}
void m() {
lent X xc = this.f;
xc.n();
}
¥

public class Main {
domain OWNED1, OWNED2;
OWNEDL1 Y y = new Y();
OWNED2 Z z = new Z();

OWNED1 B<OWNED1> b = new B(y);
OWNED2 C<OWNED2> ¢ = new C(2);

public void init() {
b.m(Q);
c.m();

}

public static void main(lent String[shared] args) {
lent Main system = new Main();

system.init();
}
}

—_ —_- —_- —_— —_— _— _ —_ _ = =

| |
[ system: |
I Main |
| |
! | v [
| ‘{ * |

' = [ b: [
! : | ' [

C | B |
K I I
1IN A AL
! z: II y: L
N P R A P
! P! L
I|" owned2 | ! ownedl | |I
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' lent !
_ — e _ - - e _ _ _ = = J

Figure 2.42: Fixing imprecision with field assignment in superclass.
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class X { 19 domain OWNED;
} 20 OWNED Y y = new Y();

21 OWNED X x = new X();

2 OWNED Container<OWNED> c1 = new Container();
class Y { 23 OWNED Container<OWNED> c2 = new Container();
} 24

25 public void init() {

26 cl.put(x);
class Container<P> { 27 c2.put(y);

P Object f; 28 }
29 public static void main(lent String[shared] args) {
void put(P Object xa) { 30 lent Main system = new Main();
this.f = xa; 31 system.init();
} 2}
} 3}
Figure 2.43: Simple code with container, adapted from (Milanova etal. 12005).
I !
"' system: :
: Main |
| PN Al
| : \ 1|1
| c2: 1|1
! Container D i
1 \
I \ 11
1
A el
Hy X: y: K
| X Y I
! 1
! 1
1 owned
[ i — bl
| |
L____'et ___
Figure 2.44: Imprecision with container.
2.6.3.2 Imprecision with containers

The use of containers can also cause a precision loss. Consider the codé in Fig. 2.43. The corre-

18 public class Main {

sponding OOG is in Fig. Z.44, and suffers from an imprecision of merging th€éwtainer
objects. The developer can also prevent this merging by pladirgndc2 in separate domains.
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_lentMain_MainownedX
_lentMain_MainownedY
_lentMain_MainownedContainer
_lentMain

2.7 Summary

To provide architectural abstraction, an object graph must distinguish between objects that are
architecturally relevant from those that are not. An OOG provides architectural abstraction pri-
marily by ownership hierarchy, by pushing low-level objects underneath more architectural ob-
jects. Thus, only architecturally relevant objects appear in the top-level domains. In turn, each
one of those objects has nested domains and objects that represent its substructure, and so on,
until low-level, less architecturally relevant objects are reached.

In addition, an OOG can provide abstraction by types, by merging objects in each domain
based on their declared types in the program, the notion of subtyping, and optional developer
input to specify the architecturally relevant types.

Indeed, collapsing many nodes into one is a classic approach to shrink a graph, and has
previously been used in extracting views of the code architectuiiléMand Klashinsky 1988;

& ). However, an OOG is unique in collapsing objects, statically, based
on their ownership and type structures, and not according to where they are syntactically declared
in the program, some naming convention or a graph clustering algorithm.

Our empirical evaluation in Chapter 4 will confirm that abstraction by ownership hierarchy
and by types can reduce the number of objects at the top level by an order of magnitude, com-
pared to a flat object graph. Before we evaluate the analysis in practice on real object-oriented
code, we describe it formally and prove key soundness theorems in Chiapter 3.
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Chapter 3

Formalization of the Object Graph
Extraction@

In this chapter, | formally describe the static analysis thatiSLIA uses to extract a hierarchi-
cal object graph from a program with ownership domain annotations, and prove key soundness
theorems.

The formalization of the static analysis assumes a Java-like program with ownership domain
annotations. Sectidn 3.1 reviews the formalization of ownership domains using Featherweight
Domain Java (FDJ). Sectidn 8.2 formalizes the Object Graph (OGraph). Sécfibn 3.3 discusses
soundness. Sectidn 8.4 discusses the Display Graph (DGraph) that a developer sees, includ-
ing applying the optional abstraction by types. | then discuss a few implementation details in
Sectior 3.6, and conclude with a discussion in Se¢tidn 3.6.

3.1 Annotations (Featherweight Domain Java)

The SCHOLIA annotations implement the ownership domains type system. For com-
pleteness, we reproduce here parts of the Featherweight Domain Java (FDJ) type system

(Aldrich and Chambelts 2004), with some correctibasd additional changes we discuss later.

3.1.1 Syntax

Fig.[3.1 shows the syntax of Featherweight Domain Java (FDJ).
* C'ranges over class names;
* T ranges over types;
* franges over fields;
* v ranges over values;
* eranges over expressions;

Portions of this chapter appearedl|in (Abi-Antoun and Aldrich 2009b).

2Errata available ahttp: //www.cs.cmu.edu/~aldrich/papers/ownership-domains-errata.html
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* x ranges over variable names;
d over domain names;
* n ranges over values and variable names;
* S ranges over stores;
* ¢ andv range over locations in the store;
* «, # andy range over formal domain parameters;
* m ranges over method names. As a shorthand, an overbar is used to represent a sequence.

* A store S maps locationg to their contents: the class of the object, the actual ownership
domain parameters, and the values stored in its fields.

* S[¢] denotes the store entry fér

* S[¢, ] to denote the value in thih field of S[/].

* Adding an entry for locatior to the store is abbreviatet{¢ — C'</>(¢")].

¢ (> e represents a method bodyxecuting with a receivet.

* The result of computation is a locatidnwhich is sometimes referred to as a value

* The set of variables includes the distinguished variables used to refer to the receiver
of a method.

* The fixed class tablé’T" maps classes to their definitions.
* A program, then, is a tuple”'T, S, e) of a class table, a store, and an expression.
We simplify the formal system slightly by treating the first domain parameter of a class as

its owning domain. We use a slightly different syntax in the practical system to emphasize the
semantic difference between the owner domain of an object and its domain parameters.

Assumptions. The formal model makes the following simplifying assumptions:
* Nolent orunique annotations: (Aldrich et al. ZQQZC) showed how to integrate them with
an ownership type system. We also discussed how the static analysis might handle these
special annotations (Sectibn 213.3, Page 41);

* No cast or the resultingrror expressions to handle failed casts: those are part of FDJ,
but are not crucial to this discussion.

Auxiliary judgements. The semantics use many auxiliary judgements (Eid.[3.2, 3.3). These
definitions are straightforward and in many cases are derived directly from rules in Featherweight
Java. The Aux-Public rule checks whether a domain is public. The next few rules define the
domains, links, assumptions, and fields functions by looking up the declarations in the class
and adding them to the declarations in superclasses. l[iTld€ecls function just returns the
union of thelinks andassumptions in a class, while thewner function just returns the first
domain parameter (which represents the owning domain in the FDJ formal system).

Themtype function looks up the type of a method in the class; if the method is not present,
it looks in the superclass instead. Tihéody function looks up the body of a method in a similar
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CT == cdef
cdef = class C<a, /3> extends C'<a>
assumes ¥ — 0 { dom Ink fd md }
dom := [public|domain d;
Ink == linkd — d';
fd == T f;
md = Trm(T T) Tinis { return ep; }
= x
|  new C'<p>(e)
| e
| em(e)
| 7
| I>e

n= oz |w
2= «a | n.d | shared

C<p>

~ N = 3
Il

€ locations

<

= L O<p>(7)
=T
= (=T

M = U
|

Figure 3.1: Featherweight Domain Java abstract syntax. Source: (Aldrich and Chdmbers 2004).

way. Finally, theoverride function verifies that if a superclass defines methqdt has the same
type as the definition of: in a subclass.

In the dynamic semantics (Fig._8.4), when a method expression reduces to a valRe, the
Contextrule propagates the value outside of its method context and into the surrounding method
expression. As this rule shows, expressions of the férna do not affect program execution,
and are used only for reasoning about invariants that are necessary for link soundness.

Congruence rules allow reduction to proceed within an expression in the order of evaluation
defined by Java (Fig.3.5). For example, the read rule states that an expregs@auces te’. f
whenever reduces te’'.

Finally, we did not include some FDJ rules, e.g., link permission rules, which can be found

elsewhere (Aldrich and Chambeérs 2004).

3.1.2 Typing Rules
The FDJ subtyping rules are in FIg. B.6. The FDJ static semantics are [0 Fig. 3.7 andinlFig. 3.8.
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(public domain d) € dom
public(d)

Aux-Public

class C<a>
= Aux-Params

params(C') =
Ink =Tinkd, — d,  links(C'<d>) = d, — d, _
: = —————=—— = —=—— Aux-Links
links(C<d,d>) = ([d/a,d'/p] (d. — d.)), ds — d.,
assumptions(C'<d>) = d, — d,
= Aux-Assume

assumptions(C<d,d'>) = ([d/a,d /] (7 — 9)),ds — d,
Aux-LinkDecls

linkdecls(C<p>) = links(C<p>) U assumptions(C'<p>)

owner(C<p>) = d; Aux-Owner

(Tr m(T T) { returne; } ) € md
mtype(m, C<p>) = [d/a] T — Tr

Aux-MTypel

m is not de fined in md
mtype(m, C<d,d'>) = mtype(m, C'<d>)

Aux-MType2

(Trm(TT){ return ¢; 1) Elnd Aux-MBody1
mbody(m,C<p>) = [d/a] (T : T, e)

m is not de fined in md

— —— Aux-MBody?2
mbody(m, C'<d,d'>) = mbody(m,C'<d>)

(mtype(m,C<p>) =T —=T)= T =T'NT =T")

: E— Aux-Override
override(m,C<p>,T — T)

Figure 3.2: FDJ auxiliary definitions. Adapted from (Aldrich and Chambers iZOMaody now exposes

the types of a method’s parameters.
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(public,, domain d) € dom domains(C'<d>) = d'
domains(C<d,d'>) = this.d,d’

Aux-Domains

Aux-Domains-Obj
domains(Object<a,>) =) :

fields(C'<d>) =T f ~
fields(C<d,d>) = ([d/a,d /BT ), T [’ Aux-Fields

fields(Object<a,>) = () Aux-Fields-Obj

CT(Object) = class Object<a,> { }

Figure 3.3: FDJ auxiliary definitions. Adapted from (Aldrich and Chambers 2004), wAereDomains
andAux-Fieldsdo not have base cases fiirject (Aux-Domains-ObandAux-Fields-Obj).

S[l) = C<p>®)  fields(C<p>)=T f
C.fi; S~ v S

[R-Read]

¢ & dom(S) S'= St — C<p>(v)]
new C<p>(v); S~ (; S

[R-New]

Slt) = C<p>(w)  mbody(m,C<p>) = (T,ep)
(m(v); S~ (> [v/T,¢/this]eq; S

[R-Invk]

[R-Context
(>v; S~

Figure 3.4: FDJ dynamic semantics. Source: (Aldrich and Chambers 2004).
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Ste e, S

RC-New
S new C<p>(v1.i-1, €, €iy1.n) > new O<p>(vy.i-1, €}, €iy1.n), S’

Ske—é, 5

Sktefi—e.f;, S RC-Read

Ske—é, 8 RC-Recvinvk

Stem(e)— eme),s ecvinv

e el S

Srerm b RC-Arglnvk

/ !
S 'U-m(vl..ifla €, €i+1..n) — U'm(vl..ifly € €i+1..n>7

Sker—é, S
SkHlve—{l>e, S

Figure 3.5: FDJ congruence rules. Source: (Aldrich and Chambers 2004).

RC-Context

CT(C) = class C<a, B> extends C'<a>

— — — Qubtype-Class
C<d,d> <: C'<d>

T Subtype-Reflex

T <:T T <:T"
T <:T"

Subtype-Trans

Figure 3.6: FDJ subtyping rules. Source: (Aldrich and Chamlbers 2004).
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I'(z) = C<p>
I3 ngis B C<p>

T-Var

X)) = C<p>
[ 3 npis H 0 C<p>

T-Loc

[, Y, nynis = assumptions(C'<p>) 0,5, ngpis FE: T
fields(C’<1_9>) = T f ? < T F, E, Nihis [ Nihis - ,—Tthis
owner(C<p>) € (domains(Tins) U owner(Tips))

[ X5 nypis F new C<p>(€) : C<p>

T-New

T3S s = eo : Ty fields(Ty)[eo/this] =T f
L' 335 nypis Feo-fi 2 15

T-Read

U5 mgnis Eeo s Ty TS5 mgnes e T,
mtype(m,Ty) =T —Tr  T'=T[e/T,ey/this| T, <:T"
[ 35 ngpis B eo.m(€) : Trle/T, eg/this]

[ mypis Fe: T
X ngpis Eloe: T

T-Context

Figure 3.7: FDJ typing rules. Source; (Aldrich and Chambers 2004).
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md OK inC fields(C'<a>)=T'g  Ink OK in C<a, B>
{this: C<@,3>}; 0; this |= this — owner(T)

K =C<a,p>(T"g, T f) { super(g); this.f = f; }
. ClsOK

class C'<a, f> extends C'<a> assumes ¥ — 6 { T f; K dom; Ink; md;} OK

CT(C) = class C<a, 3> extends C'<a>
override(m, C'<a>,T — Tg)
{z:T; this : C<a, B>}; 0; thiske: T Tr<:T
T; this : C<a, B>}; 0; this |= this — owner(T)
MethOK

Tr m(T 7) { returne; } OK in C

{dy,dy} Ndomains(C<a>) # ()
dy & domains(C'<a>) (this : C<a>;0; this = di — owner(C<a>))
dy & domains(C<a>) (this: C<a>;(;this |= this — ds) LinkOK
in

link d; — dy OK in C<a>

Ve € domain(X) 0; 2; ¢ = assumptions(X[(]) _
T-Assumptions

Y OK
domain(S) = domain(¥)  S[f] = C<l.2>(7) <= X[{| = C<l x>
fields(S[) =T f = (S[t,i] = ") A(S["] < T;) L OK
(S[t,i] =0") = (0, 2,0 |= £ — owner(X[("]))
SIS T-Store

Figure 3.8: FDJ class, method and store typing. Source: (Aldrich and Chambers 2004).
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3.1.3 Ownership domain soundness

We restate some key results from the soundness of ownership domains (Aldrich and Chambers
2004). B B
Lemma 1(Lemma).If mtype(m, D) =T — Tg thenmtype(m,C) =T — Tgforall C <: D.

Proof. By induction on the derivation af' <: D andmtype(m, D). O

Lemma 2 (Substitution Lemma)lf 'z : 7 - e : TandI' - 2/ : 7/ where7’ <: 7, then

I'F [2'/Z]e : T' for somel” <: T.

Proof. By induction on the typing rules. O
Lemma 3 (Weakening Lemma)lf ' e : C,thenl’,z: D e: C.

Proof. By induction on the typing rules. [

Lemma 4 (Store Lemma)lf fields(C<d>) = T f and S[{] = C<d>(e) ande : T" then
T <:T.

Proof. Based on the rules&-NewandR-New. O

Lemma 5 (Method Lemma).

If mtype(m,C<d,d>)=T — Ty
andmbody(m,C<d,d'>) = (T, eg)

then for someD<d> with C'<d, d'> <: D<d>

there existd}, <: Tk such that : T, this : D<d> F ep : T}

Proof. By induction onmtype.

]

Theorem 1(FDJ Type Preservation, a.k.a. Subject Reductitfrf), >, nyis e : T, X - S, and
S ke e S, then there exists’ O ¥ andT” <: T such that), X/, nys F € : T" andX + S.

Proof. By induction over the derivation &f - e — ¢’, .S, with a case analysis on the outermost
reduction rule used. O

Theorem 2 (FDJ Progress)If ), X, nyis F e : T andX = S—i.e., e is closed and well-typed,
then eithere is a value or els& e +— ¢/, S'.

Proof. By induction over the derivation df, 3, n,;s e : T O
FDJ has additional properties, such as Link Soundness, wdrehdiscussed elsewhere

(Aldrich and Chambelis 2004).
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3.2 Object Graph (OGraph)

An OGraph is a graph with two types of node®0bjects andODomains. An OGraph also has
edges,OEdges, betweerDObjects, that correspond to field points-to relations. We refer to an
OObject, ODomain, andOEdge by the meta-variable®, D and E, respectively.

3.2.1 Data Types

The data type declarations for tigGraph are in Fig.[3.0. AnOGraph G is the tripletG =

(PtO, PtD, PtE). PtO is a set ofOObjects. PtD maps a pair consisting of @Object O and
a local domain or a domain parametein the abstract syntax, i.e((), d), to anODomain D.

Effectively, Pt D maintains a mapping from formal domain parameters to actual domaiis.
is a set ofOEdges.

The analysis distinguishes between different instances of the samé'dlaaisare in different
domains, even if created at the same& expression. In addition, the analysis treats an instance of
classC with actual parametegsdifferently from another instance that has actual parameters
Hence, the datatype of &Object usesC'< D> instead of just a type and an ownif@omain.
Fig.[3.9 reflects this change, compared to the earlier data type declaratiors (Hig. 2.23). As in
FDJ, anOObject’s owning ODomain is the first elemenD; of D. For the rootOObject of an
OGraph, the owningODomain is D,...q, and the root type cannot have domain parameters.
Thus, eaclOObject O represents all object allocations of typein an ODomain D1, that have
domain parameterB, . .. D,,, which represent some runtime domains.

A domaind is declared at the level of a claS§sn a program, but each instance of clasgets
its own runtime domairi.d. Whenever the analysis distinguishes two runtime objéetsd ',
it also distinguishes the domains that these objects contain in turn, sdcheasi/’.d. Because
an ODomain represents a runtime domaind;, a domain declaratiod in the code can create
multiple ODomains D;.

To deal with recursive types, as we discussed in SeCfion 2.4.2.3[(Plage ®Hparain can
have multiple paren®Objects, and not a single one, so &Domain does not have an owning
OObject in its representation.

EachOEdge F is a directed edge from a sour€@Object to a targetOObject, and indi-
cates the field reference Note that defining a®Edge from a sourcg Domain, T'ype) pair
to a target(Domain, Type) would be less precise because that would not take into account
the domain parameters associated withC#dbject (the previous system adopted this defini-

tion dAbi-Antoun and Aldrich 2009a)). Effectively, we define @kdge in terms of a source
(OwningDomain, T'ype, Other Domain Params) triplet to a destination one.

In addition to the FDJ stor&, we maintain the mapH and K (the instrumented operational
semantics require those, as we discuss below). Thefhapaps each object locatiahin the
store to a uniqu®Object O. The mapK maps each runtime domain represented.é&sn the
store to a uniqu®Domain D.
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G € OGraph := (Objects = PtO, Domains= PtD, Edges= PtE )
— (PtO, PtD, PtE)
D € ODomain :=(Ild = D;y,Domain = C::d )
i=(Dja, C::d )
O € OObject = (Id = Oy, Type = C<D>)
= (0;q,C<D>)
E € OEdge := ( From = O, Field = f, To = Ogs )
= ( Ogsre, f, Oust )
PtD =0 1| PtDU{(0,d)— D} Points-to Domain
PtO =0 | PtOU{O} Points-to Object
PtE =0 | PtEU{E} Points-to Edge
T =0 | Yu{C<D>} Visited objects
H :®|HU{€+—>O} Object map
K =0 | Ku{fld~— D} Domain map

Figure 3.9: Data type declarations for tf@Graph.

3.2.2 Constraint-Based Specification

The analysis abstractly interprets the program, and maps concrete domain and field declarations
in the program to abstract values in@Graph, namelyOObjects, ODomains, andOEdges.

Aliasing and subtyping. The analysis conservatively assumes that two objects of the same
type in the same domain may alias. The rules use ownership domain subtypinds(Riype-
Classin Fig.[3.6), which follows standard nominal subtyping, and in addition, checks that all
domain parameters are invariant with subtyping.

Judgement form. We use a constraint-based specification (Fig.]3.10) instead of transfer func-
tions. This formalizes the static analysis as a set of inference rules, and makes it easier to prove
soundness. The constraint system is solved by addDigjects, ODomains andOEdges, as re-

quired, but unifyingDDomains using a heuristic, for termination. The analysis of a progfam

is the least solutiot’ = (PtO, PtD, PtE) of the following constraint system:

0,0, PtO, PtD, PtE + P = (CT, €,o0t)
The judgement form for expressions is as follows:
IY, PtO,PtD,PtE o g€

The O subscript on the turnstile captures the context-sensiti¥tis part of the instrumentation
that maps locations t@Objects (Sectiorl 3.311). We omi7 for most of the rules that do not

3.2. Object Graph (QGraph) 85



need it. The context is the FDJ typing context. The contéKttracks the list of the previously
analyzed cases starting from the root expression, to avoid non-termination in the presence of
recursive typesY records all the combinations of class and domain parameters that the analysis
encounters in a call stack, starting from the root expression. Not&tlsahot the same aBtO
becaus&’tO is global, wherea¥ is specific to a call stack.

Rules. The interpretation starts with a prografhconsisting of a class tableT and a root
expressiong,...;. We require arOObject, O,,,-14, Which has a singl®Domain, D,4peq, COI-
responding to the global domaihared. For clarity, we qualify a domaid by the class that
declares it, ag'::d. Since theshared domain is global, we qualify it asshared. The OOb-

ject O,0rq does not correspond to an actual runtime object, but the analysis requires a dummy
receiver for top-level code.

Dgharea = { Dy, ::shared )
me'ld = < me«ld, ObjeCt<Dshm'ed> >

The analysis starts out with the root expressigy; with anO,,,.;,4 context.
0,0, PtO, PtD, PtE t-¢0,, . €root

In PT-NEW, the analysis interpretsmew object allocation in the context of tH@Object O,
which represents the receiver, as follows. FirgtNEEw checks tha’tO has arOObject O for
the newly allocated object. Siné& D maintains the binding from each formal domain parameter
to some otheODomain, PT-NEW ensures that the representatives of the actual paranieters
passed to the class are inPtD.

Then, A-NEW uses the auxiliary judgementrfbowm to ensure thaf’t D has anODomain
corresponding to each domain that the clastcally declares. ®DoM also processes the
superclass, in order to include inherited donfains

PT-NEW then relies on the auxiliary judgementHFIELDS to ensure thaPt F has arOEdge
from O¢ to each object in the target domain that is type compatible with the target type, using
PT-LoOKUP. PT-FIELDS also processes the superclass, in order to include inherited fields.

PT-OBJ1 and A-0OBJ2 are the base cases for-Bom and Pr-FIELDS, respectively, dealing
with the root classpbject, and do not consult the superclass, to ensure that the derivation is
finite. Recall, in FDJ, the clag® ject has no fields, domains, or methods.

PT-NEW then obtains each expressiehin each methodn in C, and processes in the
context of theOObject Or. Before P-NEw checks these expressions recursively, it adds the
current combination of a type and actual domain parametefs. tdf PT-NEw discovers by
looking atY that it previously analyzed the same combination, it does not recurse into the same
OObject, thus avoiding infinite recursion. Finally,TAINEw calls the judgement recursively on
the arguments to the constructor of class.

PT-LookupP implements a similar subtyping relationship as Swbtype-Classule in FDJ
(Fig.[3.8). It compares both classes and that the a®id@imains are equal, by mapping the
domainsp; into D; using the current contexd.

3In FDJ, private domains are misnamed, and really hayeatectedsemantics (SeAux-Domainsn Fig.[3.3).
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Vi € 1..|p| D; = PtD[(O,p;)] params(C) =@
Oc¢ = ( Oyq, C<D> ) {O¢} C PtO {(O¢, ;) — D;} C PtD
PtO, PtD, PtE o ptdomains(C, O¢)
PtO, PtD, PtE o ptfields(C,O¢)
Vm. mbody(m,C<p>) = (T : T, eR)
C<D>¢Y = {z:T, this: C<p>},TU{C<D>}, PtO, PtD, PtE o er
.Y, PtO, PtD, PtE o @

I, T, PtO, PtD, PtE ¢ new C<p>(e)

[PT-NEW]

CT(C) = class O<a, > extends C'<a> ... {T f; dom; ...; md; }

V(domain d]) € dom Dj = <Didj7 dj > {(Oc, d]) = D]} C PtD
PtO, PtD, PtE ¢ ptdomains(C’,O¢)
PtO, PtD, PtE ¢ ptdomains(C, O¢)

[PT-DOM]

: [PT-OBJ1]
PtO, PtD, PtE ¢ ptdomains(Object, O¢)

CT(Object) = class Object<a,> { } [PT-OBJ2]

PtO, PtD, PtE ¢ ptfields(Object, O¢)

V(T fr) €T f  owner(Ty) =pj, Dy = PtD[(Oc,p})]
Vk PtO, PtD, PtE o, ptlookup(Ty) = Ox,  {(Oc, fk, Or)} C PtE
PtO, PtD, PtE t¢ ptfields(C’, O¢)

: [PT-FIELDS]
PtO, PtD, PtE ¢ ptfields(C,O¢)
Or = ( 044,C<D>) € PtO T =C'<p'> C<:C
Viel.lp D! = PtD|[(O,p! D! = D;
i€ L Di=PDlOp) D! PrLookup
PtO, PtD, PtE ¢ ptlookup(T") = Oy,
[PT-VAR] [PT-LOC]
T, Y, PtO, PtD, PtE Fo « T,Y, PtO, PtD, PtE o ¢
T, Y, PtO, PtD, PtE o eo
[PT-READ]
T, Y, PtO, PtD, PtE Fo eo.fx
T,T,PtO, PtD,PtEvo ey T,Y,PtO, PtD, PtE o E[PT ]
T, Y, PtO, PtD, PtE Fo eg.m(e)
Oc = H[(| T,Y,PtO,PtD,PtE
< 4 9 © [Pr-ConTEXT]
.Y, PtO,PtD,PtE oy lbe

Ve € dom(S),X[] = C<p> H[{) = 0 = (044,C<D>) € PtO
Vm. mbody(m,C<p>) = (T : T, eR) {Z:T, this : C<p>},0, PtO, PtD, PtE ¢ er
PtO, PtD, PtE Fory S

Figure 3.10: Constraint-based specification of the object graph extraction analysis.
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To make the induction go through, even though the points-abyais only looks at the new
expression, the analysis requires rules for all the expression types. TherfNMewWis the most
interesting, and is the only one that modifiesF .

The rules R-VAR and Pr-Loc for variables and locations, respectively, are uninteresting. In
the case of P-LocC, the store constraint™SIGMA enforces any necessary conditions on each
location/.

The field access and method invocation rules are more interestindRERD analyzes the
receiver of the field access. Similarly7NVvK analyzes the receiver and the actual arguments
for the method invocation.

There are two other interesting rulesT-EONTEXT analyzes method calls in progress
e, where/ is the receiver, by moving into the context of the receiver objget Finally, the
induction requires an augmented store typing rule;SFGMA, to ensure that method bodies
have been analyzed for all objects in the store.

Recursion. The analysis must handle recursive types, which can leddGaph to grow ar-
bitrarily deep. To get a finit®©Graph and ensure that the analysis terminates, the analysis could
stop expanding the object structure at a certain depth. However, merely truncating the recursion
may lead to unsoundness, if it fails to reveal relations when child objects point to external objects,
and the child objects are beyond the truncated depth.

Instead, the analysis creates a cycle in@t&aph when it reaches a similar context. The
cycle creation happens when the sa@@omain appears as the child of twoObjects. This
justifies anODomain not having an ownin@Object.

In Sectior 3.4, we discuss howDasplayGraph displays a potentially cycli©Graph.

3.3 Object Graph Soundness

We demonstrate the object and edge soundness of an extracted object graph using a proof. The
proof relies on an instrumentation of the FDJ dynamic semantics, an approximation relation, and
standard Progress and Preservation theorems.

3.3.1 Instrumented Semantics

To prove the soundness of the analysis, we take the FDJ operational semantiEs [Fig. 3.4), and
we instrument them (Fig._3.11). This instrumentation is safe since discarding it produces exactly
the previous semantics (F[g. B.4). For instance, compareeR-d IR-NEw (the common parts
of the rules are highlighted in Fig._3]11). Also note that only IRviNrequires an interesting
instrumentation. The rules IRHAD, IR-INVK and IR-GONTEXT, again, are needed for the
induction to go through, but do not impact the instrumentation.

The instrumented evaluation judgement form is as follows:

e;S;H K ~¢ge; S H; K'

whereGG = (PtO, PtD, PtE) is the statically computed object graph.
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(ddom(S) S =S|t C<p>(0)]
— (PtO, PiD, P{E)
7d D, = K[(.d]
Oc = (0;q,C<D>)  Oc € PtO  H' = H[l+— O¢]
V(domain d;) € domains(C<p>) D; = PtD[(O¢,d;)] K' = K[(.d; — Dj]
V(Ty fr) € fields(C<p>) Oy = H]vy]
Ey = (Oc, fr,Or)  E, € PtE IR-New]

new C<p>(v); S|, H; K ~¢q |(;S"|; H; K'

5[ =C<p>()  fields(C<p>) =T [

IR-READ
ST HK e[S K
S[t] = C<p>(@w)  mbody(m,C<p>) = (T, er)
[IR-INVK]
(m(v); S| H; K ~¢ > [v/T,0/this]er; S|, H; K
[IR-CONTEXT]

oS K oo ST K

Figure 3.11: Instrumented runtime semantics (core rules).

In IR-NEw (Fig.[3.11), the actual domains passed to the class being allocated are
runtime domains, whicli’ maps to stati©Domains in PtD. We useH to lookup theOObject
O, for each valuey;, passed to initialize thé'" field of the object being allocated, and ensure
that theOEdge is in PtE.

The instrumented evaluation relation also includes congruence rules, similar to those in FDJ

(Fig.[3.8), and which leave the instrumentation as is (Fig.13.12).
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;8 Hy K~ e; Sy H'; K

IRC-NEW
new C<p>(v1.i—1, €, €it1.0n); S; H; K ~»g new C<p>(vy_;_1, 62, €itl.n); S H'; K/[ ]

GO;S; H,K ~a 66’5”7]_]/)[(/
co-fis S H; K~ €. fi; Sy H's K

[IRC-READ]

eo; S H K ~¢g 66;5”;[{’;}(’

IRC-RECVINVK
eo-m(€); S; H; K ~¢ e'O.m(E);S’;H’;K/[ ]

ei; S;H; K ~qgel; S H K

[IRC-ARGINVK]
v.m(V1 -1, €5, €i41.0); Ss Hy K ~>g v.om(vy o1, €5y €i01.0); S H K

;8 H; K wg i S HL K
(oe;S;H K ~gl>e; S H K’

[IRC-CONTEXT]

Figure 3.12: Instrumented runtime semantics (congruence rules).
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3.3.2 Approximation relation

We define an approximation relation between a statéS, H, K) and an analysis result
(PtO, PtD, PtE) as follows:
Definition 7 (Approximation relation (P-APPROX).

VXS, (S H K)~ (PtO,PtD, PtE)
iff
Ve € dom(S), L[] = C<l.d>
implies
H[(] = O¢ = (Oy4,C<D>) € PtO
andv(i.d; € ('.d  K[l;.dj] = D; = (Djq,.d;) € rng(PtD)
andVd; € domains(C<0'.d>)  K[(.d]] = D; = (D4, d;)  {(O¢,d;) — D;} € PtD
and fields(X[(]) =T fandVk,V¢' S[t, k] =0 = E, = (H[{], f, H[l']) € PtE

3.3.3 Lemmas

The Progress and Preservation theorems require the following lemmas.
Lemma 6 (Points-to Substitution Lemma).

If

I'N'z:7ke: T

I,7:7, 7T, PtO, PtD, PtE Fo e
I'+7v: 7 wherer’ <: [v/z]7

then

I'+ [v/z]e : T' for somel” <: [v/z|T
T, T, PtO, PtD, PtE to [v/7)e

Proof. By induction on thd", T, PtO, PtD, PtE o relation. O
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Lemma 7 (Points-to Weakening Lemma).
If I,Y, PtO,PtD, PtE ¢ e
then T',YU{C<D>}, PtO, PtD, PtE F¢o e

Proof. By induction on thd”, T, PtO, PtD, PtE t relation. ]
Lemma 8 (Points-to Strengthening Lemma).

If T,0,PtO,PtD, PtE o newC<p>(v)
Viel.[p|  D; = PtD[(O,p;)]
[, YU {C<D>}, PtO, PtD, PtE t-o: €
thenl’, T, PtO, PtD, PtE Fo €

Proof. By induction on thd™, T, PtO, PtD, PtE o relation. We cover one interesting case.
Case Pr-NEw: Thene’ = new C'<p'>(€). There are several sub-cases to consider.
Vie 1.]p/| D; = PtD[(O', p;)] params(C') =@
O¢cr = < Oz’d7 O/<ﬁ> > {Ocl} C PtO {(OC/,OJZ-) — D;} C PtD
PtO, PtD, PtE tFo ptdomains(C',O¢r)
PtO, PtD, PtE l_O’ ptfields(C’, OC/)
Vm. mbody(m,C'<p/>) = (: T, eg)
C'<D'>¢gYUu{C<D>} =
{z:T, this:C'<p'>}, T U{C<D>} U{C'<D'>}, PtO, PtD, PtE t-o,, eg
I, Y U{C<D>}, PtO, PtD, PtE o/ &
I, T U{C<D>}, PtO, PtD, PtE t-o new C'<p'>(€)
SubcaseC’'<D'> # C<D>andC'<D'> ¢ TU{C<D>}

{z:T, this:C<p>},TU{C<D>}U{C'<D'>}, PtO, PtD, PtE o, ex By sub-derivation

{z:T, this:C<p>},TU{C'<D'>}, PtO, PtD,PtE t-o_, e By i.h.
[, YU{C<D>}, PtO,PtD, PtE \-or € By sub-derivation
.Y, PtO, PtD, PtE For € By i.h.
I,Y,PtO,PtD, PtE For € By PT-NEwW

SubcaseC’<D'> # C<D>andC'<D'> € TU{C<D>}

I, YU{C<D>},PtO,PtD,PtE o € By sub-derivation
.Y, PtO, PtD, PtE b & By i.h.
.Y, PtO, PtD, PtE bor ¢ By PT-NEW

SubcaseC’<D'> = C<D>,i.e.C'<D'> € TU{C<D>}

{z:T, this:C<p>},0, PtO, PtD, PtE o, eg By inversion
{z:T, this:C<p>},T U {C<D>}, PtO, PtD, PtE t-o,, er By Points-to Weakening Lemma
[l
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Lemma 9 (Pt-Domains Lemma).

f 0,3 npsbe:T

then

Y S

PtO, PtD, PLE o S

PtO, PtD, PtE Fo new C<p>(7)

(S, H, K) ~ (PtO, PtD, PtE)

PtO, PtD, PtE ¢ ptdomains(C, O¢)
Viel.p|  D;= PtD[(O,p;)]

Oc = (04, C<D>)  {Oc} C PtO

Vd; € domains(C<p>) D; = PtD[(O¢,d;)]

Proof. By induction on thePtO, PtD, PtE ¢ ptdomains(C, O¢) relation.

Case Pr-Dowm..

PtO, PtD,
Vi e 1..|p|

PtE Fo new C<p>(7)

By assumption

D; = PtD[(O, p;)] By sub-derivation of P-NEw

params(C) =@

Oc = (O, C<D>)

{O¢} C PtO

{(O¢, ;) — D;} C PtD

PtO, PtD, PtE ¢ ptdomains(C,O¢)
V(domain d;) € dom D; = (D, d; )
{(O¢,d;) — D;} C PtD

dom € domains(C<p>)

PtO, PtD, PtE ¢ ptdomains(C', O¢)

Subcase’’ # Object

Subcase’’ = Object

ptdomains(C’,O¢) = )

By sub-derivation of P-NEwW
By sub-derivation of P-NEwW
By sub-derivation of P-NEwW
By sub-derivation of P-NEwW
By sub-derivation of P-NEW
By sub-derivation of P-Dom
By sub-derivation of P-Dom

By definition ofdomains
By sub-derivation of P-Dom

By i.h.

By definition of Aux-Domains-Obj

Case Pr-OBJ1: Is immediate.
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Lemma 10(Pt-Fields Lemma).

If 0,32 npisEe: T
YES
PO, PLD, PLE Fory
PtO, PtD, PtE o new C<p>(7)
(S, H, K) ~ (PtO, PtD, PLE)
PtO, PtD, PtE ¢ ptfields(C, O¢)
Viel.[p| D;= PtD[(O,p;)]
Oc = (0, C<D>)  {O¢} C PtO
then
(1) Ox = Hlv]
(2) V(T fx) € fields(C<p>)

Ey, = (Oc, fi, O) E, € PtE

Proof. By induction on thePtO, PtD, PtE t¢ ptfields(C, O¢) relation.
Case Pr-FIELDS:.

PtO, PtD, PtE ¢ new C'<p>(7) By assumption

PtO, PtD, PtE o ptfields(C,O¢)
V(Ti fr) €T f
owner(Ty) = p),
Dy, = PtD[(Oc, p)]
Vk PtO, PtD, PtE Fo, ptlookup(T}) = Ok
{(Oc, fr, Ox)} C PtE
Oy = { Oiq, Cr<Dy> ) € PtO
T, =C,<p> C, < C,
Vie L7l Dy = PD|(Oc,i)
PtO, PtD, PtE to ptfields(C', O¢)

Dy, = Dy,

Subcase”’ # Object

Subcase’’ = Object

By sub-derivation of P-NEW
By sub-derivation of P-FIELDS
By sub-derivation of P-FIELDS
By sub-derivation of P-FIELDS
By sub-derivation of P-FIELDS
By sub-derivation of P-FIELDS

By inversion of A-LOOKUP
By inversion of A-LooKuP
By inversion of A-LOOKUP
By sub-derivation of P-FIELDS

By i.h.

ptfields(C',Oc) =0 By definition of Aux-Fields-Obj

Case Pr-OBJ2:. Is immediate.
This shows (2).
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To show (1), we use the approximation relation RKPPROX

T, foeT f By sub-derivation of P-FIELDS

(S,H,K) ~ (PtO, PtD, PtE) By assumption
Vo € dom(S), S[vy] = Th<v.d> By PT-APPROX
implies

Hvy) = Oy = (044, T<D>) € PtO
andvuy.d; € vj.d
K[vk;.dj] = Dj = (Dyq;,d;) € rng(PtD)
andVd; € domains(Tk<v§€_.d>)
Klvg.d;) = D; = (Dya,, d;)  {(Ok,d;) = D;} € PtD
andfields(S[v]) =T f
andVk, Vv, Slu, k] = v, = Ey = (H[vi), fr, H[v}]) € PtE
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3.3.4 Preservation

Theorem 3(Points-to Preservation (Subject Reduction)).

If

0,3, nupis Fe: T
PtO, PtD, PtE borpy &

PtO, PtD, PtE o e

(S,H,K) ~ (PtO, PtD, PtE)

;H;KWG ;S [ H: K'

then

there exist&’ O Y and T’ <: T such that), >/, nyis F €' : T andX' - 57|,
(S H',K") ~ (PtO, PtD, PtE),

PtO, PtD, PtE o €,

and PtO, PtD, PtE For g X

The Points-to Subject Reduction theorem extends the FDJ Subject Reduction (the common
parts are highlighted). Those parts are proved by induction over the derivation of the FDJ evalu-
ation relatiore; S ~ ¢; S’ (Fig.[3.4).

Proof. We prove Points-To Preservation by induction on the instrumented evaluation relation
e;S; H; K ~¢ ¢€;58"; H'; K’ with a case analysis on the outermost reduction rule used.
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Case IR-NEw: Thene = new C<{'.d>(v). And ¢’ = /.

To show:

(1) (S',H',K") ~ (PtO, PtD, PtE)
(2) PtO, PtD, PtE t-o ¢

(3) PtO, PtD, PtE For g X

PtO,PtD,PtE+Fpoe and (S, H,K)~ (PtO,PtD, PtE) By assumption
Ve € dom(S),X[)] = C<i/.d> SinceY - S
- By PT-APPROX
H[i] = O, = (04, O<D>) € PtO By PT-APPROX
andv.d; € /.d K[/.d;] = D,; = (Dia,,d;) € rng(PtD) By PT-APPROX
andvd; € domains(C<p>) By PT-APPROX
K(idj]) = D;j = (Dyqg;, dj ) {(O.,d;) = D} € PtD By PT-APPROX
andfields(S[)) =T f By PT-APPROX
andvk, V. S, k] = = (H[], fr, H[/]) € PtE By PT-APPROX
We also have:
Oc¢ = (0;4,C<D>) € PtO By sub-derivation of IR-Mw
S’ = Sl C<l.d>(v)] By sub-derivation of IR-Nw
H' = H[l — O¢] By sub-derivation of IR-N¥w
Vie |l'dl D;=K|[l.d] By sub-derivation of IR-Mw
Vd; € domains(C<('.d>) By sub-derivation of IR-Nw
D; = PtD[(Oc¢,d;)] By sub-derivation of IR-Nw
K' = K[(.d; — Dj] By sub-derivation of IR-w
I D Ust Y[ =C<l.d>
VT fe € fields(X'[(]) s.t. S[¢, k] = vy, By sub-derivation of IR-N¥w
Oy = Hvg] By sub-derivation of IR-Mw
Er = {(Oc¢, fr,Ok) € PtE By sub-derivation of IR-NMwW
(S',H',K') ~ (PtO, PtD, PtE) By PT-APPROX

This proves (1)

PtO, PtD, PtE o € By PT-Loc sincee’ = /¢
This proves (2)
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PtO, PtD, PtE Fopy ¥
Vi € dom(S), 2] = C,<p>
H[i] = O, = (04, C,<D>) € PtO
Vm. mbody(m, C,<p>) = (7 : T, eg)
{z: T, this : C<p>},0, PtO, PtD, PtE o, er
Oc = (04, C<D>) € PtO
S = S[ s C<l.d>(D)]
H' = H[l — Oc]
PtO, PtD, PtE Fo e
e = new C</('.d>(7)
Vm. mbody(m,C<p>) = (T :T, eg) C<D>¢Y =
{z:T, this: C<p>}, T U{C<D>}, PtO, PtD, PtE t-o, eg
{7 : T, this : C<p>},0, PtO, PtD, PtE o, eg
Vi € dom(S"),¥'[i] = C<p>
H'[)] = O, = (04, C,<D>) € PtO
Vm. mbody(m, C,<p>) = (7 : T, eg)
{z:T, this : C,<p>},0, PtO, PtD, PtE o, er
PtO, PtD, PLE Fop g S
This proves (3)

By assumption
By sub-derivation of P-SIGMA

By sub-derivation of IR-NMw
By sub-derivation of IR-NMw
By sub-derivation of IR-NMw

By assumption witke below

By sub-derivation of P-NEwW
SinceY = ()

By Points-to Strengthening Lemma
By above

By PT-SIGMA with aboveH’ andy
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Case IR-ReEAD: Thene = /. f;. And e’ = v;. To show:

(1) (S",H',K") ~ (PtO, PtD, PtE)
(2) PtO, PtD, PtE t-¢ ¢
(3) PtO, PtD, PtE Fop g X

(S, H, K) ~ (PtO, PtD, PtE)

S'=S H =H K =K
This proves (1)

PtO, PtD, PtE o €
This proves (2)

PtO, PtD, PtE Fepp X
S'=S H =H K =K
This proves (3)

By assumption
By sub-derivation of IR-RAD

By PT-Loc sincee’ = vy,

By PT-SIGMA
By sub-derivation of IR-RAD
TakeY =X

Case IR-CONTEXT: Thene = /> v. Ande’ = v. To show:

(1) (S',H',K") ~ (PtO, PtD, PtFE)
(2) PtO, PtD, PtE t-o ¢
(3) PtO, PtD, PtE For g X

(S,H,K) ~ (PtO, PtD, PtE)
S'=S H =H K =K
This proves (1)

PtO, PtD, PtE o €
This proves (2)

PtO, PtD, PtE Forp %
S'=S H =HK =K
This proves (3)

By assumption
By sub-derivation of IR-ONTEXT

By PT-Loc sincee’ = v

By PT-SIGMA
By sub-derivation of IR-©ONTEXT
TakeY =X
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Case IR-INVK: Thene = £.m(v). And e’ = (> [0/T,(/this]eg.

To show:

(1) (S',H',K') ~ (PtO, PtD, PtE)
(2) PtO, PtD, PtE ¢ €

(3) PtO, PtD, PtE Fop g X

(S,H,K) ~ (PtO, PtD, PtE) By assumption
S'=S H=HK =K By sub-derivation of IR-NVK
This proves (1)

From Pr-INvK:

.Y, PtO, PiD, PLE o ¢y T, YT, PtO, PtD, PtE Fo &
[T, PtO, PtD, PtE ¢ eg.m(€)

From MethOK:

mtype(m,Ty) =T — Tg {z:T, this : C<@, B>}, 0, thiskep: Ty Tr<:T
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S[¢] = C<d,d'>(v) By sub-derivation of IR-NVK

mbody(m,C<d,d>) = (T, er) By sub-derivation of IR-NVK
eg =1

Y] = C<d,d> =T, T-Store
eo: O<d,d>

mtype(m,C<d,d>) =T — Tg

v:T, By inversion
T, <: [v/7,¢/this| T for someT, andT
There are som®<d> and T s.t. By Method Lemma (pade 83)

Ty, <: Tr andC<d,d'> <: D<d>

st. {7 :T,this : D<d>}Fer: Tg

[ {z:T, this: C<d,d'>},0, PtO, PtD, PtE o eg By PT-SIGMA
Oc = H[/( By PT-SIGMA
Since term substitution preserves typing, there exists sgme

Ts <: C<d,d"> such that[v/z, {/this]er : T

Ts <: Ty andTy <: Tg By above
Ts <:Tg By transitivity of <:
TakeT =T =Ty Preservation
PtO, PtD, PtE o ¢ By PT-LocC
.0, PtO, PtD, PtE o, [v/T,(/this|eg By Points-to Substitution Lemma
I',0, PtO, PtD, PtE o (> [v/Z,(/this]eg By PT-CONTEXT

This proves (2)

PtO,PtD, PtE Forp X By PT-SIGMA
S'=S H=HK =K By sub-derivation of IR-©NTEXT
This proves (3) TakeY' = %
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Case IRC-READ: Thene = eq. f;.. And e’ = ¢} fi.. To show:

(1) (S",H',K") ~ (PtO, PtD, PtE)
(2) PtO, PtD, PtE t-¢ ¢
(3) PtO, PtD, PtE For g X

eo; S; H; K ~g ey; S, H'; K By sub-derivation of IRC-RAD
(S",H',K'") ~ (PtO, PtD, PtFE) By induction hypothesis
This proves (1)

eo; S; H; K~ ey; S H'; K By sub-derivation of IRC-RAD
PtO, PtD, PtE t-¢ ¢ By induction hypothesis
PtO, PtD, PtE ¢ €. fx By PT-READ

This proves (2)

eo; S; H; K ~q ey; S H'; K By sub-derivation of IRC-RAD
PtO, PtD, PtE For g X By induction hypothesis
This proves (3) TakeY =%
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Case IRC-RECVINVK: Thene = ¢y.m(€). And e’ = e.m(€). To show:

(1) (S',H',K") ~ (PtO, PtD, PtE)
(2) PtO, PtD, PtE b €
(3) PtO, PtD, PtE For g X

€0y i Hy K ~g e S H' K
(S",H',K') ~ (PtO, PtD, PtE)
This proves (1)

eo; S; H; K~ ey; S, H'; K
PtO, PtD, PtE t¢ e

PtO, PtD, P{E o €

PtO, PtD, PtE ¢ ey.m(e)
This proves (2)

€0} S5 H; K~ e S H K
PtO, PtD, PtE Forp X
This proves (3)

By sub-derivation of IRC-RCVINVK
By induction hypothesis

By sub-derivation of IRC-RCVINVK
By induction hypothesis

By PT-INVK

By PT-INVK

By sub-derivation of IRC-RCVINVK
By induction hypothesis
TakeY' = X%
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Case IRC-ARGINVK: Thene = v.m(vy i1, €, €i01.0). ANd e = v.m(vy -1, €}, €i401.0)-
To show:

(1) (S, H',K') ~ (PtO, PtD, PtE)

(2) PtO, PtD, PtE t-o ¢
(3) PtO, PtD, PtE For g X

ei; S; H; K ~~g el S's H K By sub-derivation of IRC-RGINVK
(S",H',K') ~ (PtO, PtD, PtE) By induction hypothesis
This proves (1)

ei; S; Hy K ~~g el S H' K By sub-derivation of IRC-RGINVK
PtO, PtD, PtE ¢ €. By induction hypothesis
PtO, PtD, PtE o v.m(vi_i1,€;, €ir1.n) By PT-INVK

This proves (2)

ei; S; H; K ~~g el S H' K By sub-derivation of IRC-RGINVK
PtO, PtD, PtE For g X By induction hypothesis
This proves (3) TakeY =X
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Case IRC-New: Then e¢ = new C<p>(vi._1,€i €it1.n)- And ¢ =
new C'<p>(vy_;_1,€., €i41.,). TO Show:

(1) (S",H',K") ~ (PtO, PtD, PtE)
(2) PtO, PtD, PtE t-¢ ¢
(3) PtO, PtD, PtE For g X

ei; S;H; K ~~¢g e S H'; K By sub-derivation of IRC-Ew
(S",H',K") ~ (PtO, PtD, PtF) By induction hypothesis
This proves (1)

ei; S;H, K ~ge; S’ H' K By sub-derivation of IRC-Ew
PtO, PtD, PtE ¢ e By induction hypothesis
PtO, PtD, PtE l_O new C<]_9>(’U1”i_1, 6;, €i+1..n) By PT'NEW

This proves (2)

ei; Sy H; K~ e 8" H' K By sub-derivation of IRC-Ew
PtO, PtD, PtE bor g X By induction hypothesis
This proves (3) TakeY = %
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Case IRC-CONTEXT: Thene = (> ey. Ande’ = (> ¢f. To show:

(1) (S',H',K") ~ (PtO, PtD, PtE)
(2) PtO, PtD, PtE b €
(3) PtO, PtD, PtE For g X

eo; S; H; K ~>g ey; S H'; K

By sub-derivation of IRC-ONTEXT

(S"H',K') ~ (PtO, PtD, PtF) By induction hypothesis

This proves (1)

eo; Sy H; K~ ey; S H'; K
PtO, PtD, PtE ¢ e

PtO, PtD, PtE o (1> ¢
This proves (2)

eo; s Hy K~ ef; S H K
PtO, PtD, PtE tForp Y
This proves (3)

By sub-derivation of IRC-ONTEXT
By induction hypothesis
By PT-CONTEXT

By sub-derivation of IRC-ONTEXT
By induction hypothesis
TakeY =X
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Because we added instrumentation to the runtime semanticsw@eed to prove progress,
i.e., the instrumentation will not cause the program to get stuck during evaluation.

3.3.5 Progress

Theorem 4 (Points-to Progress).

If

0,3, nupis Fe: T
PtO, PtD,PtE Fep g &
PtO,PtD,PtE o e
(S,H,K) ~ (PtO, PtD, PtE)
then

either| e is a value

or else; H;K ~qle;S"[|H: K'

Proof. We prove Points-to Progress by induction over the derivatioRt!, PtD, PtE t¢ e,
with a case analysis on the last typing rule used.
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Case Pr-NEw: Then there are two sub-cases to consider, depending on whetiegeralues.
Subcasee = new C<p>(vy i1, €;, €i41.n)- Then IRC-New can apply.
IRC-NEW

ei; Sy H; K~ e S H K

From — — 7 T 0.
new C<p>(v1.i-1, €, €i41.0); S; Hy K ~»g new C<p>(vy_i_1,€;,€41.5); 5 H K

PtO, PtD, PtE o e; By sub-derivation of P-NEwW
ei; Sy H; K ~~¢g e S"s H; K By induction hypothesis
new C'<p>(v1.i-1, €, €ix1.m); S; H; K ~¢

new C<p>(vi ;i 1,€€i11.0); 8 Hy K By IRC-NEwW

Takee' = new C<ﬁ> (Ulnifl, 6;-, ei+1..n>

Subcase: = new C'<('.d>(v). Takee’ = (. Then IR-New can apply.
IR-NEW

¢ & dom(S) S = S|t — C<p>(v)]
— (PtO, PtD, PtE)
7d D= K[l.d)
Oc = (04,C<D>)  Oc € PtO  H' = H[{ — O]
V(domain d;) € domains(C'<p>) D; = PtD[(Oc¢,d;)] K' = K[l.d; — D]
V(Ty frx) € fields(C<p>) O = H]v]
E, = <Oc, fk, Ok> E, € PtE

From ——
new O<p>(v); S; H; K ~¢ (;S"; H; K’
To show:
(Q)Vie|d D;=KI[l.d]
(2)O¢ = (04, C<D>)  O¢ € PtO
(3) Vd; € domains(C<l'.d>) D; = PtD[(O¢,d;)]
(4) Oy = Hlvy]
(5) Yk € fields(C<l'.d>) Ep = (O¢, fr,Or)  Ey € PtE
(S,H,K) ~ (PtO, PtD, PtE) By assumption
Vi € dom(S), X[l = C,</.d> SinceX - S
H[i] = O, = (04, C,<D>) € PtO By PT-APPROX
andv.;.d; € /.d K[.d;] = D,; = (Djq,,d;) € rng(PtD) By PT-APPROX
andvd,; € domains(C,<!.d>) By PT-APPROX
Kludj] = D;j = (Dia,;, dj)  {(O,,dy;) — D} € PtD By PT-APPROX
andfields(X[)) =T f By PT-APPROX
andvk, V. S[, k] = = Ey = (H[], fx, H]']) € PtE By PT-APPROX

This proves (1)
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PtO,PtD,PtE o e By assumption

Viel.[0.d D;= PtD[(O,p;)] By sub-derivation of P-NEw
params(C) =@ By sub-derivation of P-NEW
Oc = ( Oy, C<D>) By sub-derivation of P-NEw
{O¢} C PtO By sub-derivation of P-NEwW
This proves (2)

CT(C) = class C<a, 3> extends C'<a> ... {
T f; dom; ...; md; }

{(O¢, ;) = D;} C PtD By sub-derivation of P-NEw
PtO, PtD, PtE t-¢ ptdomains(C, O¢) By sub-derivation of P-NEW
This proves (3) By Pt-Domains Lemma
PtO,PtD, PtE Forpg & By assumption
Vi € dom(9), %] = C,<p> By sub-derivation of P-SIGMA
H[] = O, = (04, C,<D>) € PtO By sub-derivation of P-SIGMA

This proves (4)

PtO, PtD, PtE t¢ ptfields(C,O¢) By sub-derivation of P-NEwW
This proves (5) By Pt-Fields Lemma
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Case Pr-VAR: Thene = z.

Not applicable since variable is not a closed term.

Case Pr-Loc: Thene = /.

e is value.

Case Pr-READ: Thene = ¢y. f. There are two sub-cases to consider, depending on whether

the receiveg, is a value.
Subcase:; = /. Thene = /. f;.

IR-READ

S| = C<p>(v

Erom 4] p>(v)

fields(C<p>) =T f

Cfiy SsHy K ~g v Sy H K

Takee' = v;
Then IR-READ can apply.
Subcasery = €. f;.
IRC-READ
co; S; Hy K g eq; S H' K
€o-fis S H; K g €. ' HI K

From

ep; Sy H; K~ eg; Sy H' K
eg.fi;S; H; K ~¢g eg.fi;S”;H";K”
Takee' = ep. f;

By ordinary FDJ progress.

By induction hypothesis
By IRC-READ
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Case Pr-INVK: Thene = ¢q.m(€). There are three sub-cases to consider, depending on
whether the receiver,, or the method arguments are values.

Subcasery = ¢, ande = 7, that is,e = £.m(7).
IR-INVK
S[{] = C<p>(@w)  mbody(m,C<p>) = (T, er)

From
(m(0);S; Hy K ~g (> [0/T,0/this]er; S; H; K

Then IR-INVK can apply. By ordinary FDJ progress.
Takee' = (> [v/T,(/this]er
Subcase, = ¢, that ise = ej.m(e).
IRC-RECVINVK
€o; S; Hi K ~g ef; S HL K

From
eo-m(€); S; H; K ~¢ eg.m(e); S"s H'; K

ep; S; Hy K ~g ey, S H K By induction hypothesis
eo-m(€); S; Hy K ~¢ eg.m(e); S"; H"; K" By IRC-RECVINVK
Takee' = ej.m(e)

Slchase€0 =y, thatis,e = v.m(vl_i_l, €, ei—f—l..n)-

IRC-ARGINVK
ei; S;H; K ~gel; S H K

. . . / . /. /. /
U-m(vl..i—h@i,@iﬂ..n),S, H; K ~¢ U-m(vl..iflaeiaewrl..n)aS;HvK

From

PtO, PtD, PtE o e; By sub-derivation of P-INVK
ei; S;H; K ~~g e " H; K By induction hypothesis
0.V, €, €ig1n); S5 H K~ v.m(vr i1, €, eip1n); S HY K" By IRC-ARGINVK

/ /
Takee' = v.m(vyi-1,€;, €i11.m)
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Case Pr-CoNTEXT: Thene = {1 eq. There are two sub-cases to consider, depending on
whethere, is a value.

Subcase is avalue, i.e.¢ = (> 0.
IR-CONTEXT

From

(ov;S;H K ~g v, S, H K

Then IR-GONTEXT can apply
Takee' = v

Subcasez is not a value.
IRC-CONTEXT

co; i Hi K ~g ef; S H K
(>e; S;Hy K ~g ey S’ H K

From

e0; S; H; K ~¢q ey; S's H'; K' By induction hypothesis
(>ep; S;H K ~g ey S H K By IRC-CONTEXT
Takee' = (> ¢
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3.3.6 Object Graph Soundness

An OGraph is asoundapproximation of a Runtime Object Graph (ROG) represented by a well-
typed storeS, for any program run, when tH@Graph relates to the ROG informally, as follows:
* Object soundness:Each object in the ROG has exactly one representatd@bject in
the OGraph. Similarly, each domain in the ROG has exactly one representafenain
in the OGraph. Furthermore, this mapping is consistent with respect to the ownership
relation. If object/ is in the domair?’.d in the ROG, then the representative/a$ in the
representative of .d in the OGraph. Similarly, if £ has a domair in the ROG, then the
representative fof has a representati@ omain for d in the OGraph.
* Edge soundnessif there is a field reference from objett to object/, in a ROG, then
the OGraph has anOEdge between th®©Objects O, andO, that are the representatives of
(1 and/,, respectively.
The following Object Graph Soundness theorem restates more formally the above informal
definitions, and combinasbject soundnesandedge soundness.

Theorem: Object Graph Soundness.

VG = (PtO, PtD, PtE) - P = (CT,e)  CT,e well-typed
Ve; 0;0;0 ~¢ ey S; Hy K

VX FES

PtO, PtD, PtE For g S

(S, H,K) ~ (PtO, PtD, P{E)

where thew~, relation (Fig[3.1B) is the reflexive and transitive closure of-the relation.

By inversion of A-APPROX the theorem states that given a well-typed st®ranOGraph
produced from the same progra there exists a mafl that maps each locatiaghin the store
to a uniqueOObject, and a mapK that maps each runtime domain in the store to a unique
ODomain, and this mapping is consistent with respect to the ownership relation. In addition, the
OEdges in anOGraph soundly abstract all field points-to relations between any two objects in an
ROG.

To prove the Object Graph Soundness theorem, we need to show:

(1) PtO, PtD, PtE Fory S
(2) (S, H, K) ~ (PtO, PtD, PtE)

[PT-REFLEX]
e; S; Hy K ~( e; S, H; K

G,S, H,K “’“)*G GII;S//;H”;K// 6//;‘51//;}[//;1(// "’“)G CI;S/;H/;K,
e; Sy H; K ~¢ e S H K

[PT-TRANS]

Figure 3.13: Reflexive, transitive closure of the instrumented evaluation relation.
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Proof. By induction on thew¢, relation. There are two cases to consider:
Case Pr-REFLEX:

(S;H;K) ~G Immediate, becausg = ()
PtO,PtD, PtE Forg ¥ Immediate, from P-SIGMA store constraint
Case Pr-TRANS:

e:0:0:0 ~5 e: S H: K By assumption
0,0,0) ~G Becauses = )
e:0:0;0 ~% € S H K’ By inversion
(S"’H; K') ~ G By induction hypothesis
¢S H: K ~ge S H K By inversion
(S;H;K)~G By Preservation
e:0:0:0 ~% e: S H: K By assumption
0,0,0) ~G BecauseS = ()
e:0:0;0 ~% €5 S H K’ By inversion
PtO, PtD, PtE Forp Y By induction hypothesis
¢S H: K e S:H K By inversion
PtO, PtD, PtE Forp X By Preservation

3.3.7 Limitations

The proof assumes that objects are created only in locally declared domains or domain param-
eters. Also, it does not reflect the existence of the annotatiens or unique (Section 2511,
Pagd 6b).

3.4 Display Graph (DGraph)

The static analysis extracts a hierarchical object graph, the Ownership Object Graph (O0G),
from a program with ownership domain annotations. The OOG has two parts:
* OGraph: this is graph that can have cycles in the presence of recursive types;
* DGraph: this is a depth-limited unfolding of th@Graph with lifted edgego account for
information below the cutoff depth.

3.4.1 Depth-Limited Unfolding

We do not formalize the generation ofZxGraph from an OGraph. An ODomain, OObject
or OEdge in an OGraph creates a correspondii@Domain, DObject or DEdge in the DGraph
(Fig.[3.14). Furthermore, RObject can merge one or mof@Objects.
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DG € DGraph Objects = DOS, Domains= DDS, Edges= DES')
DOS,DDS, DES)
DD € DDomain ::=(Ild = DD,;,Domain=d )

DD id) >
Id = DOy, Types= {C<D>...})

=

=

(

(

(

( DOy, {C<D>...})
(From = DO, Field = f, To = DOy )
(

{DO

{DD

{DE

DO € DObject

DFE € DEdge =

= (DOsye, f, DOyt )
DOS = .} Set of DObjects
DDS = ) Set ofDDomains
DES = } Set of DEdges

Figure 3.14: Data type declarations for tHgGraph.

3.4.2 Abstraction by Types

In addition to providing abstraction by ownership hierarchy, an OOG can provide abstraction
by types, as we discussed informally in Secfion 2.4.3.2 (Palge 59). We formalize abstraction by
types as a post-pass on thé&raph (Fig.[3.1%). Abstraction by types relies on a heuristic based
on a more flexible notion of type compatibility (Rule RyA-COMPAT), instead of the strict FDJ
subtyping rules used in tH@Graph. With the heuristic turned on,[@O0bject can merg€Objects
that are in the same ownir@Domain (Rule R-MERGE-OBJECTS.

When accounting for inheritance, domain parameters must obey the following condition:

C' <: CandC’'<D'> <: C<D> impliesD’ = D, D"

We formalize below the two heuristics, abstraction by trivial types and abstraction by design
intent types.

3.4.2.1 Abstraction by trivial types

Abstraction by trivial types merges objects whenever their types share one or more non-trivial
least upper bound (LUB) types. The heuristic does not merge objects that shatrévailyypes
as supertypes. Theetof trivial types,T'T, is user-configurable, and typically includ@sject,
Cloneable andSerializable from the Java Standard Library. Many marker interfaces that do
not declare any methods, suchRasidomAccess, are also in the list.

Abstraction by trivial types corresponds to the disjuadstsNonTrivialLUB (Fig.[3.16) in
R-Aux-CoMPAT and can be turned-off by setting the flagr T to false (Fig.[3.15).

SCHOLIA assumes that the program’s whole source code, including external libraries that are
in use, are available. Thus, the class taBile includes entries for all of those types.

3We formalize abstraction by types in tiGraph in order to simplify the formalization of th®Graph. We
conjecture but do not prove, however, that soundness still holds when using abstraction by types.
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byTT,byDIT,TT, DIT \- compat(C, C')  (Dy = D;)

DOS, DObject{ DOy, {C<D>...}), DObject( DOjar, {O’<ﬁi. L)) =
DOS, DObject( DOyn, {C<D> ... Y U{C'<D'> ...} )

[R-MERGE-OBJECTY

Ci<:Cy or (Oy<:(Cf
or( byTT and 77T F existsNonTrivialLUB(Cy, Cy) )
or( byDIT and DIT + mapToSameDIT(Cy, Cy) )

[R-Aux-COMPAT|
byTT,byDIT, TT, DIT + compat(Cy, Cs)

Figure 3.15: Rules for abstraction by types.

ICeCT.(Cr <: C Cy<:C C¢TT)

- — [R-ABSTRACTBY-TT]
TT F existsNonTrivialLUB(Cy, C2)

Figure 3.16: Abstraction by trivial types.

ECGDIT.( Ch<: C Cy <ZC)
DIT t mapToSameDIT(Cy, C5)

[R-ABSTRACTBY-DIT]

Figure 3.17: Abstraction by design intent types.

3.4.2.2 Abstraction by design intent types

Abstraction by design intent types corresponds to the disjomagfToSameDIT (Fig.[3.17) in
R-Aux-CoMPAT and can be turned-off by setting the flagdIT to false (Fig.[3.15).

In this heuristic, the developer defines an ordered list of design intent types)(/ld'dlecide
whether to merge two objects of typg andCs, the analysis finds the first type in thel 7', C,
such that”; <: C andC, <: C. If DIT does not include such a type, then this heuristic does

not apply.

3.4.2.3 Abstraction by types and soundness

Abstraction by types leads only to additional merging of objects in a domain, so it does not
compromise soundness. Thus, we need not prove soundnesudtiyeh.

3.5 Implementation

This section discusses some implementation details.
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3.5.1 Traceability

In our implementation of th@Graph, anODomain knows about the underlying domain declara-
tion in the code, and similarly, a@Object knows about the underlying field declarations in the
code. In addition, the implementation sets the traceability information ilbthaph based on
the information in thédGraph. This allows a developer using the tools to trace fromRieaph

to the corresponding lines of code. For example, a developer can trace fid@bject to the
corresponding new expressions in the code, and similarly, fr@&dge to the corresponding
field declaration.

3.5.2 Differences between the formal and the concrete systems

There are several differences between the formal system and the concrete implementation. The
formal system lacks the following language features:

* Generic types—they are implicitly supported, rather than explicitly formalized as in

Generic Universe Types (Dietl etlal. 2007);

* Method domain parameters;

* Arrays;

* Interfaces;

¢ Domain paths;

* Inner classes;

* lent andunique annotations.

The concrete system handles all of the above language features.

3.6 Discussion

3.6.1 Our Previous Formalizations

To my knowledge, this is the first time that a whole-program analysis is formalized using a
constraint-based specification, with Featherweight Java. Usually, constraint-based specifications
are inter- or intra-procedural, and deal with three-address code representations.

I now discuss the differences between the formalization of the static analysis in this chapter

and our previous ones (Abi-Antoun and Aldrich 2007b, 2d)09a).

3.6.1.1 Pseudo-code

(Abi-Antoun and Aldrich 2007b) presented an early version of the object graph extraction analy-

sis using pseudo-code, which made proving soundness unclear. In addition, in that version of the
algorithm, multiple interface inheritance could potentially trigger unsoundness. To address this
unsoundness, the later version added the Rule BRM=EXISTING to merge objects after the

fact (Abi-Antoun and Aldrich 2009a). Furthermore, when pulling objects from formal domain
parameters to actual domains, the earlier algorithm added more edges than soundness required
and was thus less precise.
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3.6.1.2 Term-rewriting system

(Abi-Antoun and Aldrich ZQQQa) formalized an earlier extraction static analysis using rewriting

rules. The earlier formalization provethique object and domain representativ@san inter-
mediate cyclic representation, which is then projected into a graph that is displayed. However,
it was unclear that the unfolding step preserved the soundness invariants. Moreover, the earlier
formalization lacked a proof afdge soundness.
The rewriting rules created a singMstractDomain for each domain declaratiahin the ab-
stract syntax. In this formalization, tli&Graph can already distinguish between t@®omains
that have the same underlying domdim the abstract syntax.
In the present formalization, the analysis still unfolds a cy@lferaph to a certain thresh-
old. The developer sees tlEGraph above the threshold, and tlGraph below the threshold
is still cyclic. This side-steps the issue of determining a depth at which to cutoff the recur-
sion and the potential unsoundness of selecting an incorrect depth in the earlier representation.
I- ' LZDQQa) only conjectured and did not prove the existence of such a
depth.
Also, (Abi-Antoun and Aldrich 2009a) conjectured edge soundness. Using the constraint-
based specification in this chapter, we proved lodijfect soundnesandedge soundnegSec-
tion[3.3.6), which subsume thenigue object and domain representativwsl edge soundness

defined inl(Abi-Antoun and Aldrich 2009a).

Finally, using abstract interpretation makes the analysis more comparable to previous
Andersen-style points-to analyses (Pichardie 2008).

3.6.2 Precision

For simplicity, the formal system does not model field updates. Indeed, initializing a field has the
same challenges as assignment in our system, and the rules are no different. Still, modeling field
updates andull could increase the precision. For instance, if a field never assigned to and
remains null in any program run, the analysis may not create an edge. In the current model, if a
classC declares a field of type T, then the constructor must initialize the field, and the analysis
conservatively assumes that an objeof type C' has a points-to edge to an objedf typeT'.

3.6.3 Points-to Analysis

The object graph extraction analysis is a kind of a points-to analysis — a fundamental static
analysis to determine the set of objects whose addresses may be stored in variables or fields of
objects. A common idea in points-to analysis is to merge all the objects that are created at the
same allocation site into an equivalence class. A basic points-to analysis attaches an allocation
labelh € H at each instructionew C'(), as in:

new" C()

The static object name is then definedlas H dBigha.r_de_ZD_dS). In contrast, our analysis dis-
tinguishes between allocations in different domains and that have different domain parameters,
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and must analyze expressions of the kind:
new C<P0wner7 Pparams-ﬂ>()

where P, is the owning domain, an®,,,..,s are optional additional domain parameters.
Each of theP, could be a formal domain parameter. At runtime, each domain parameter is
bound to some actual domain, so the static analysis must track the bindings of formal parameters
to actual domains.

Our static analysis is similar to a flow-insensitive Andersen-style points-to analysis
(Andersen 1994), but adapted to object-oriented code (Milanova et al. 2005). The state-of-the-
art is object-sensitivanalysis (Milanova et al. 2005), particularly when computing a complete
points-to solution for all the variables in a program. In contrast, a refinement-based approach,
which performs points-to analysis on demahd_(_Sr_idLaLadkﬁ_aﬂ 2005; Sridharan dR®BOG;
|Xu_and_RQ_unIé{L20_(|)8), may achieve higher precision, but may not scale when computing solu-
tions for a large number of variables. Thus, a refinement-based analysis does not seem suitable
for SCHoLIA which computes points-to information for an entire program.

Our analysis is object-insensitive but can considel@thain-sensitive, since it distinguishes
between objects in different domains. Since domains are coarser-grained than objects, we believe
our analysis is more scalable than an object-sensitive one. However, our analysis suffers from
some of the imprecisions that object-sensitivity addresses such as field assignment through a

superclass (Milanova et lal. 2005) (see examples of imprecision in SEcfioh 2.6.8.Page 69).

3.7 Summary

In this chapter, | formalized a static analysis to extract from a program with ownership domain
annotations, @lobal hierarchical object graph. The object graph conveys architectural abstrac-
tion by ownership hierarchy and by types. Moreover, | proved that the extracted object graph
is bothobject soundandedge sound. These properties are crucial to ensure that an extracted
object graph shows all runtime objects and relations, in order to use it to analyze communication
integrity.

Credits

Lecture notes by David Pichardie on the soundness of an Andersen-style points-to analysis
(Pichardig 2008) inspired our style of proving soundness. Pichardie, however, used an object-
orientedV hileo language with three-address code, rather than Featherweight Java.
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Chapter 4

Evaluation of the Object Graph
Extraction@

In this chapter, | evaluate the annotations and the static analysis by extracting hierarchical object
graphs from several real representative object-oriented systems that | annotated manually.

4.1 Introduction

This chapter focuses on extracting hierarchical object graphs, and does not represent the out-
put as a standard runtime architecture. As | mentioned in Chiapter 1, however, abstracting an
object graph into a C&C view is largely automatic. So we will use the terms “runtime archi-
tecture”, “component” and “tier”, interchangeably with “object graph”, “object” and “domain”,
respectively.

This chapter is organized as follows. In Secfion 4.2, | list the research questions that this eval-
uation aims to answer. In Section#.3, | discuss the tool support for the annotations and the object
graph extraction. In Sectidn 4.4, | discuss the extraction methodology. In Secfion 4.5, | discuss
the evaluation methodology. Sectibnl4.6 discusses a case study using the JHotDraw system.
Section 4.7 discusses a case study using the HillClimber system. Seclion 4.8 discusses a field
study using the LbGrid system. Section]4.9 has an evaluation based on a cognitive dimensions
framework. | conclude this chapter with a discussion in Se¢tion 4.10.

4.2 Research Questions

Our evaluation aims to answer the following hypotheses (Selctioh 1.10[ Page 25):

H-1: Lightweight typecheckable ownership annotations can specify, within the code,
local hints about object encapsulation, logical containment and architectural tiers.

H-2: In practice, a static analysis can extract from an annotated program a global,
hierarchical object graph that provides architectural abstraction by ownership hier-
archy and by types.

Portions of this chapter appearedl|in (Abi-Antoun and Aldrich 2007a, 2008b,/2009a).
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We refine the hypotheses into the following research question

RQ1 — Precision: In practice, does the static analysis, by abstracting objects to domains and
types, produce object graphs that have sufficient precision? Or does it produce object
graphs that suffer from being over-conservative approximations that are fully connected
graphs, or collapse all the objects in a domain to a single object, in the absence of aliasing
information more precise than what ownership annotations provide?

RQ2 — Abstraction by ownership: In practice, can a hierarchical object graph show architec-
turally relevant objects from the application domain in the top-level domains, and low-level
objects that are data structures underneath architecturally significant objects?

RQ3 — Abstraction by types: In practice, can abstraction by types achieve additional architec-
tural abstraction in an object graph?

RQ4 — Iteration: In practice, can one effectively iterate the process of adding the ownership
annotations and setting the optional input to the static analysis, e.g., to control abstraction
by types, to extract an object graph with the desired architectural abstraction?

RQ5 — Annotations: Do the annotations describe local, modular information regarding object
encapsulation, logical containment and architectural tiers? Or does a developer adding the
annotations need some high-level global information?

RQ6 — Value: In practice, does an OOG highlight potentially useful information about the sys-
tem’s runtime structure?

4.3 Tool Support

The tool support for extracting object graphs consists of two plugins in the Eclipse open source
development environment, which has become popular with researchers and practi@rs (Goth
2005; Murphy et dilogbes). The first tool manages and typechecks the annotations and the other
one extracts and displays an object graph from an annotated program.

4.3.1 Annotation Tool

| designed a set of Java 1.5 annotations that implement the ownership domain type system using
existing language support for annotations. | also re-implemented a typechecker for the annota-
tions, ArchCheckJ, which stands for Artdctural annotation Cheek for Java. ArchCheckd is

a plugin to the Eclipse Java Development perspective (JDT), and displays annotation warnings
in the Eclipse problem window. A developer can double-click on a warning in the problem win-
dow to go the line of code with the missing or inconsistent annotation. Additional details on the
annotation language and the design of ArchCheckJ are in Applendix A.

4.3.2 Object Graph Extraction Tool

| implemented the static analysis to extract an object graph (which we discussed in CHdgters 2, 3)
as another Eclipse plugin, ArchRecJ, which stands for i#e&ctural Reovery for &ava. The

object graph extraction works in the presence of annotation warnings, but warns that the extracted
object graph may not soundly reflect all objects and relations.
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the left pane shows the ownership tree and the right pane shows the depth-

Figure 4.1: ArchRecJ tool

limited unfolding. The tool shows the field declarations that an object in the OOG represents. The tool
also helps a developer select the trivial types and the design intent types for the abstraction by types.
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The ArchRecJ tool offers the following features (Fig.]4.1):

Select top-level object:the user can interactively select an object as the root of the graph
to view its substructure;

Set trivial types: a developer can specify an optional list of trivial types to use the abstrac-
tion by types feature;

Set design intent types:a developer can specify an optional list of design intent types to
use the abstraction by types feature;

Display inheritance hierarchy: the tool can display the inheritance hierarchy of the types

of the field declarations that a display object merges, to help the developer fine-tune the
list of trivial types or design intent types for the abstraction by types;

Collapse or expand selected itema developer can collapse or expand the sub-structure
of a selected object or domain;

Control unfolding depth: a developer can control the visible depth of the ownership tree,
using the slider control in Fi§. 4.1;

Set object labels:Each object in an extracted object graph represents at least one field or
variable declaration in the program. An object might have multiple types, and the analysis
picks one of those types as the label. ArchRecJ can label objects with an optional field
name or variable name and an optional type name. The type used in the label consists of a
least-upper-bound type or a design intent type or a labeling type (discussed below);

Set additional labeling types:the object graph extraction non-deterministically selects a
label for a given object based on the name or the type of one of the references in the
program that points te. A developer can specify an optional list of labeling types for
labelling objects. For example, in F[g. 2.3(b), the tool adds the decorétistener) to

an object’s label, if it merges at least one object of that type, as is the casesfiitart,
barChart andmodel. We implemented this feature in response to the developer’s feed-
back during the field study, because he informed us that labels are very important in a
diagram;

Trace to code: the tool can show the list of field declarations and their types that a given
display object merges. In addition, the developer can trace from the field declarations to
the right lines of code. This feature is useful to guide the developer to the field declarations
in the program that require different annotations.

Navigate: the tool supports zooming in and out, panning, scrolling and other standard
operations;

Search: the tool supports searching for an object in the ownership tree by type or field
name;

Persist extracted OOG:the tool can persist an extracted OOG into an XML file. This
file can then be viewed using a standalone viewer. When using the viewer, the developer
cannot control the abstraction by types, but can still expand or collapse selected elements.

Thus far, our research has focused on the underlying static analysis rather than on novel
techniques for visualizing object graphs. For instance, our visualization uses the simple but
effective GraphViz tool (Gansner and North 2000) which supports clustered graphs, but does not

support visual features such as cross-hatching fill patterns. Future work ma

specialized visualization frameworks such asrReMP VIEWS (Storey et al. 1

consider using more
8).
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4.4 Extraction Methodology

In this section, | discuss thecBoLIA methodology to extract object graphs. Following the gen-
eral SSHOLIA approach (Sectidn 1.7, Pdge 20), this involves adding and checking the annotations
(Sectior4.4.11), then running the static analysis (Se€tionl4.4.2).

The study’s experimenter (hereafter “I”) developed the ArchCheckJ and ArchRecJ tools, but
none of the subject systems. | mostly learned the architectural structure of the subject systems
from iteratively annotating the code, examining the extracted OOGs and relating the OOGs to
class diagrams drawn by others, or to other available documentation.

4.4.1 Adding and Checking the Annotations

In this section, | discuss the process of adding the annotations, typechecking them, and address-
ing the annotation warnings.

4.4.1.1 Gathering available documentation.

Before adding annotations and extracting object graphs, it is often useful to have an informal
diagram of the target architecture, to help guide the annotation process. Indeed, most architec-
tural extraction case studies start by gathering available documentation (Tzerpos &nd Holt 1996).
When available, the documentation can help identify the domains in the system, the types that are
most architecturally relevant and the hierarchical system decomposition, i.e., how to decompose
some of the objects into nested sub-structures.

For example, for the JHotDraw system, | had access to a tutorial by JHotDraw’s original de-
signers|(Beck and Gammma 1997; Garma 1998), but for a slightly older version than the version
of JHotDraw | annotated. One of the tutorials discusses the design patterns that JHotDraw im-
plements, using a code architecture, but does not describe JHotDraw’s runtime structure. | also
found several class diagrams drawn by others who studied JHotDra\/\@le 2000).

4.4.1.2 Typechecking the annotations

A developer adding the annotations often follows an iterative process. After each round of an-
notations, he runs the typechecker, examines the warnings, and addresses them from the most to
the least important ones.

The annotations are modular and can be checked one class at a time. However, some amount
of iteration is involved. For instance, if the developer defines a domain parameter on a class, she
has to find all the locations in the code that use that class, and bind that domain parameter to
some other domain in scope. So this may require a continuous annotate-check cycle.

4.4.1.3 Prioritizing the annotation warnings

It is often helpful to fix the annotation warnings in a specific order. | illustrate these using the
Listeners example (Fig. 2.4). From most to least important are:
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1. Undeclared domains or domain parameters. For instaneeoimainOWNED must be de-
clared (line[b in Fig[ 2]4) before theisteners field declaration can be annotated with
OWNED (line[d). Similarly, the domain parametatqline [21) andv (line [3) must be de-
clared.

2. Unbound domain parameters at field and variable declarations. For instance, since class
Model takes a domain parameteythe field declaratiomodel of type Model must bind
the domain parameter to another domain in scope, €LY (line[29). This also includes
binding the domain parameters on containers sudkasor andList (lines[9[24). Recall
thatList takes arELTS formal domain parameter for the list elements.

3. Domain parameter inheritance. For instance, the domain parametePieChart is
bound to the domain parameter BieChart’s superclassBaseChart (line[19).

4. Assignment rule. For instance, a reference annotatedD@@BMENT cannot be assigned

to another one annotated withEW. Similarly, alent variable, which denotes a temporary

alias, cannot be stored in a field.

Array parameters. Domain annotations for the array elements must be also provided.

External annotation files. The ArchCheckJ tool allows a developer to partially annotate the

parts of the Java standard library or other third-party libraries that are in use ($ectidn A.4.1,

Pagd 324). The external files for the Java Standard Library can often be reused across

different systems.

7. Domain links. Finally, a developer can set domain links and link assumptions to enforce
access permissions between domains.

2

4.4.2 Refining the Object Graph

In this section, | discuss the process of refining the extracted object graph using annotations.

4.4.2.1 Overall strategy

Just as there are multiple architectural views of a system, there is no single right way to annotate
a program. And different annotations can produce different object graphs (Refer to discussion in
Sectiorf 2.6.2, Page 66). However, a type system ensures that the annotations are consistent with
each other and with the code.

Good annotations minimize the number of objects in the top-level domains by pushing more
objects underneath other objects. In particular, the goal is to remove from the top-level domains
low-level objects that are data structures, such as instancescobr andList. Ideally, the
top-level domains show only objects that are architecturally relevant and correspond to entities
from the application domain.

4.4.2.2 Refining the ownership annotations

A developer controls the architectural extraction process as follows. First, she chooses the top-
level domains. Then, she achieves the desired number of objects in each top-level domain,
primarily throughabstraction by ownership hierarchy.
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A developer-specified annotation can push an object undiérrea., into a private or a pub-
lic domain declared inside—a more architecturally-relevant object. The parent object becomes
primary, and the child object becomsscondary. As a result, only primary objects appear in
the top-level domains. Each of those objects has more domains and objects, until low-level ob-
jects are reached. In addition, the developer must minimize the remaining annotation warnings,
especially any high-priority ones.

To summarize, a developer can do any of the following: (a) Push a secondary object under-
neath a primary object using the strict encapsulation of private domains; (b) Push a secondary
object underneath a primary object using the logical containment of public domains; or (c) Pass
a low-level object linearly using thenique annotation.

4.4.2.3 Code changes

In some cases, adding annotations that specify strict encapsulation and avoid the representation
exposure may require a change to the code, e.g., to return a copy of an internal list instead of an
alias (Aldrich et all 2002¢; Aldrich and Chamb 004). Generally, using logical containment
does not require any code changes. In most cases, defining public domains required changing
the annotations only locally and incrementally.

4.4.2.4 Using abstraction by types

To reduce clutter further, the developer can enafistraction by types, which merges more
objects in a given domain, based on the architectural relevance of their declared types. The
object graph extraction tool provides some support to help a developer select the types to be used
for abstraction by types.

4.4.2.5 Controlling the level of detall

Finally, she achieves an appropriate level of visual detail by expanding or collapsing the sub-
structure of selected objects, or changing the unfolding depth uniformly across the graph. The
analysis adds any lifted edges to account for the elided substructures.

4.5 Evaluation Methodology

The evaluation methodology follows closel\cSoLIA’s extraction methodology above (Sec-
tion[4.4), and involves the following steps:

1. Add annotations to the code and typecheck them;

2. Extract an object graph that conveys architectural abstraction by ownership hierarchy. Op-

tionally, specify types to control abstraction by types;

3. Iterate the annotations, and the abstraction by types.

In addition, in preparation for the evaluation, | performed the following tasks, which may not
be always required.
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Making minor code changes to use annotations. In most cases, we did not change the code

as we were adding the annotations. However, we made some minor code changes as required by
the annotation syst&nFor instance, one change may involve extracting a local variable from a
new expression, in order to add an annotation on the local variable. Another change is to convert
an anonymous class to a nested class, in order to declare domain parameters on the class.

Refactoring to generics. Two subject systems, JHotDraw (Section 4.6) and HillClimber (Sec-
tion[4.7), were developed prior to Java 1.5 and did not use generic types. | refactored them to
use generics, mostly automatically using Eclipse’s tool supb_Qr_t_(Euhr_dﬂ_ei_dl. 2005). The LbGrid
subject system in the field study (Section/4.8) was already using Java 1.5 and generic types and
did not require such a refactoring.

Re-engineering system during annotation process.| had previously studied the HillClimber
subject system when | re-engineered it to ArchJava (Abi-Antounetal. 2007a). The re-
engineering study also produced a version that cleaned up the original code, for instance by
making most class fields be private. For this case study, | started from the refactored Java version
and added ownership domain annotations to it.

4.6 Extended Example: JHotDraw

JHotDraw MG) is open source, rich with design patterns, uses composition and inheri-
tance heavily and has evolved through several versions. For this case study, we used version 5.3,
which has around 200 classes and 15,000 lines of Java.

Design documentation for JHotDraw is available, e.b_u_(g_dlhma] 1998; Riehle|2000; Kaiser

). A manually drawn class diagram (Hig.]4.2) shows some of the core types. An often-cited

article @‘1) discusses that JHotDraw follows the Model-View-Controller design pattern.
However, the JHotDraw package structure does not reveal that fact, since all the core types are
in oneframework package.

4.6.1 Annotation Process

In this section, I discuss the process of adding annotations to JHotDraw to explain what the
annotations look like and the information that they describe. In particular, a developer focuses
mainly on the structure of the system, rather than its behavior. Moreover, when adding the
annotations, the developer describes only local, modular information, and does not require direct
knowledge of the global system structure.

20ne proposal, JSR 308 (Ernst and Coward 2006), permits annotations to appear in more places, such as on
generic type arguments. Some of the code changes we made may no longer be necessary once JSR 308 is adopted
into the Java language, and supported by existing development environments such as Eclipse.
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Figure 4.2: JHotDraw class diagram showing how we annotated instances of the selected types. Source:
dééﬁ@ Eiiﬁb).

4.6.1.1 Annotation Overview

For JHotDraw, | defined the following three top-level domains and organized instances of the
core types as follows:

* MODEL: has instances dirawing, Figure, Handle, etc. ADrawing iS composed of
Figures that know their containin@rawing. A Figure object hasHandles for user
interactions. Th®rawing interface also extendsigureChangeListener (not shown in
Fig.[4.2) to listen to changes to if$gures.

* VIEW: has instances dfrawingEditor, DrawingView, etc. TheDrawingView class ex-
tendsDrawingChangeListener (not shown) to listen to changesipawing objects;

* CONTROLLER: has instances dfool, Command andUndoable. A DrawingView USeS a
Tool to manipulate ®rawing. A Command encapsulates an action to be executed, i.e.,
implements the Command design pattern without undo.

Once | defined the three top-level ownership domaioesEL, VIEW andCONTROLLER, | pa-
rameterized most of the JHotDraw types with the corresponding domain pararnieteasdcC,
respectively. Some of these types required only one or twg BfandC. | could have further
reduced these parameters by using the implicit owner domain parameter, accessible using the
OWNER annotatiof.

4.6.1.2 Annotation Examples and Observations

In the following discussion, | illustrate the annotation process using actual examples and code
snippets from JHotDraw. | slightly edited the code for presentation by removing the trivial

3We did not use theWNER annotation initially (Section 2.3.3, Palgd 41), because the tools did not fully support it
at the time. In future work, we will update the annotated subject systems to udiéltReannotation more heavily.
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class DrawApplication<M,V,C> ... implements DrawingEditor<M,V,C> ... {

}

class MDI_DrawApplication<M,V,C> extends DrawApplication<M,V,C> ... {
}

class JavaDrawApp<M,V,C> extends MDI_DrawApplication<M,V,C> {
}

class Main {
domain MODEL, VIEW, CONTROLLER;

VIEW JavaDrawApp<MODEL,VIEW,CONTROLLER> app = new JavaDrawApp(Q);

public void run() {
app.open();
}

public static void main(lent String argsl[shared]) {
lent Main system = new Main();
system.run();
}
}
Figure 4.3: JHotDraw: defining the three top-level domains on the root class.

visibility modifiers such agrivate or publicE. | make several observations based on studying
the annotations.

Observation: Ownership domains specify architectural runtime tiers. A tiered architecture

is often used to organize an application into a User Interface tier, a Business Logic tier, and a
Data tier. Ownership domains express a tiered runtime architecture by representing a tier as an
ownership domain_(Aldrich and Chambers 2004), and a permission between tiers as a domain
link to allow objects in the User Interface tier to refer to objects in the Business Logic tier but
not vice versa. Such an architectural structure and constraints cannot be expressed in plain Java
code. For example, | organized the JHotDraw runtime structure according to the Model-View-
Controller design pattern (Fig_4.3).

Observation: Ownership domains enforce instance encapsulation.All ownership type sys-
tems can express and enforce instance encapsulation which is stronger than the module visibility
mechanism of making a fielprivate. In ownership domains, placing a field in the private
OWNED domain means that the object can be reached only by going through its owner. As a result,
no aliases to that object can leak to the outside.

ConsiderCompositeFigure in JHotDraw (Fig[4.4). Placing the list of compositegures,
represented by the fieltFigures, in the OWNED private domain encapsulatéBigures to pre-
vent objects that only have access to the composite object from modifying the list directly. If a de-
veloper tries to subvert the language visibility mechanisms by returning a referengeitosae

4(Abi-Antoun and Aldrich 2007a) shows mostly the same examples, but in the concrete annotation language.
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The interface of a graphical figure. A figure knows its display bozx
and can draw itself. A figure can be composed of several figures.

A figure has a set of handles to manipulate tts shape or attridbutes.
A figure has onme or more connectors that define

how to locate a connection point.

* %X X x %

*/

interface Figure<M> extends Storable <M> {

b
/kk
* A Figure that is composed of several figures.
*/
abstract class CompositeFigure<M> extends AbstractFigure<M>
implements FigureChangeListener<M> {

domain OWNED;

VAL
* The figures that this figure is composed of
*/

OWNED Vector<M Figure<M> > fFigures;

VL]
* Adds a vector of figures.
*/

void addA11(M Vector<M Figure<M>> newFigures) {
// Cannot assign object M Vector newFigures to owned Vector fFigures
// this.fFigures = newFigures;
fFigures.addAll (newFigures) ;

}

X
Figure 4.4: JHotDraw:CompositeFigure annotations.

orprotected field using gpublic accessor method, the typechecker prohibjsta i c method

from taking anOWNED parameter or returning @&wNED object.
For example, during software evolution, a novice developer can use Eclipse to

generate a

setter for thefFigures field. Eclipse produces the following code, without annotations:

void setFFigures(Vector<Figure> figs) {
this.fFigures = figs;
}

As the developer is adding the annotations tosseFFigures () method, the typechecker

can warn him that the parametgirgs of a non-private method cannot be marke@w@s$eD. And

any other annotation would fail the assignment check when overwritingfthgures field.

To avoid the warning, the developer can rewrite geeFFigures() method to no longer

overwrite the existing field, and instead, call dieear () andal1A11 () methods.

void setFFigures(Vector<Figure> figs) {
// Use the following, instead of overwriting the field
this.fFigures.clear();

4.6. Extended Example: JHotDraw
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this.fFigures.addAll(figs);
}

When manually adding annotations, it is possible to miss many opportunities for strictly en-
capsulating objects. Indeed, I initially annotaté#d gures with the domain parametérinstead
of the OWNED domain. In many cases, objects should be encapsulated to avoid the representation
exposure, but are not. Making these objects encapsulated may require a code change, e.g., by
returning a shallow copy of an object such dsiat, instead of an alias.

Extracting the object graph helped visualize the annotations and encouraged the use of strict
encapsulation sinceWwNED objects no longer clutter the top-level domains. Future work may
include developing a tool to prompt a developer when a field could be encapsulated. For example,
a lightweight compile time ownership inference algorithm, eLg“_(,LLu_a.nd_Mdethd 2007), could
suggest possible Eclipse “quickfixes” to strictly encapsulate objects.

Observation: Ownership domains expose implicit communication. Design patterns such as
ObserverL(Q_ama_eﬂél._léM, p. 293) can decouple object-oriented code, but tend to make the
communication between objects implicit. Adding ownership domain annotations can help make
that communication more explicit.

We initially wanted to parameteriZeawing (Fig.[4.3) with only the1 domain parameter, but
DrawingChangeListener iS implemented bPrawingView. So theDrawingChangeListener
reference had to be in théIEWw domain, which in turn required th& domain parameter.

By making implicit communication explicit, the annotations seem to prematurely constrain
DrawingChangeListener objects to be in th& IEW domain. Sincé®rawing was a core inter-
face referenced by other interfaces in the ctxemework package, this led to passing all three
domain parameters to many additional interfaces and classes that implement those interfaces.

If Drawing did not have to be parameterized by domain paramgtemight not have dis-
covered the implicit communication in the observer by adding the annotations. Thus, ownership
domain annotations can help make implicit communication explicit, when a reference requires
permission to access a new part of the program for the first time.

Observation: Ownership domains expose tight coupling. Let us temporarily ignore the ear-
lier limitation with adding annotations to the listeners and assuméthating could be param-
eterized by only th&l domain parameter. Let us now consider whether it would be possible to
parameterize interfad&andle (Fig.[4.6) with domain paramet#randC. A Hand1le would be in
theC domain parameter and access objects in that domain parameter and oiottn@in param-
eter, i.e., it should not access objects in thdomain parameter. Note that even if the explicit
paramete€ was not provided, that domain would still be accessiblgataile using the implicit
OWNER annotation.

A comment in the code indicated that Version 4.1 deprecated the originakeStart ()
method which took @rawing object as one of its parameters, in favor ofiavokeStart ()
method that takes instead a method parameter offtypeingView, which is parameterized by
M, V. andC. This required passing ttendle the additional domain parametérSinceHandle is
a core interface referenced by other interfaces in the toseework package, this also led to
passing all three domain parameters to many additional types.
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VLS

* Drawing ts a container for figures. Drawing sends out DrawingChanged
* events to DrawingChangelisteners whenever a part of its area was

* invalidated. The Observer pattern is used to decouple the Drawing

* from t1ts views and to enable multiple views.

*/

interface Drawing<M,V> ...{

VALS
* Adds a listener for this drawing.
* DrawingView implements DrawingChangeListener,
* so the objects are in ’V domain parameter
*/

void addDrawingChangeListener(V DrawingChangelistener<M,V> listener);

VL]
* Adds a figure and sets its container to refer to this drawing.
* @param figure to be added to the drawing

* Qreturn the figure that was inserted (might be different from the figure spectified).

*/
M Figure<M> add(M Figure<M> figure)
}
Figure 4.5: JHotDraw: adding annotations barawing.
VLS

* Handles are used to change a figure by direct manipulation.

* Handles know their owning figure and they provide methods to locate

* the handle on the figure and to track changes.

* Handles adapt the operations to manipulate a figure to a common interface.
*/

interface Handle<M,V,C> {

J**
* @deprecated As of wversion 4.1, use invokeStart(z, y, drawingView)
*/

void invokeStart(int x, int y, lent Drawing<M> drawing);

VELS
* Tracks the start of the interaction.
* @param © the x position where the interaction started
* @param y the y position where the interaction started
* Oparam view the handles container
*/

void invokeStart(int x, int y, V DrawingView<M,V,C> view);

M Undoable<M,V,C> getUndoActivity();
}
Figure 4.6: JHotDraw:Hand1e with M, V andC domain parameters.

4.6. Extended Example: JHotDraw
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interface Undoable<M,V,C> {

V DrawingView<M,V,C> getDrawingView() ;

}
Figure 4.7: JHotDraw:Undoable with M, V andC domain parameters.

interface Handle<M,C> {
void invokeStart<V> (int x, int y, V DrawingView<M,V,C> view);

M Undoable<M> getUndoActivity() ;
Figure 4.8: JHotDraw:Hand1e with only M andC domain parameters.

Observation: Ownership domains expose and enforce object borrowing.Let us assume
that the above refactoring after JHotDraw Version 4.1 which introduced the tighter coupling
was never performed, i.edandle still needed a@rawing instead of aDrawingView. Undo
support was added to JHotDraw for the first time in Version 5.3. In partichardle now

had a reference tdndoable —which in turn required domain parametéry andC because
Undoable’s getDrawingView () method returned BrawingView (Fig.[4.7).

Now, let us see if it would be possible to annot@ieloable and Handle with only
the domain parameteis and C (Fig.[4.8). The domain paramet&rcan then be added to
invokeStart () as a method domain parameter.

Using a method domain parameter to annotate the formal parawmietecould enforce the
constraint that a developer should not store in a field#wringView object that is passed as
an argument tanvokeStart () (Fig.[4.9). Of course, a developer could storelthewingView
object in a field of typé@bject, but that field would have to be cast t®sawingView in order
to be useful.

Instead of using a method domain parameter to enforce object borrowing, one could use the
lent annotation to allow a temporary alias to an object within a method boundary. We found a
few such examples in JHotDraw. For instance, the methadffectedFigures () (Fig.[4.10)
makes a copy of theent argument because it cannot hold on to it.

In fact, thelent annotation can be formally modeled as a method domain parameter. The
type system prohibits a method from returningemt value, although it allows a method to
return an object in a method domain parameter. In the cagea@fingView, lent cannot
be used because implementationdwfokeStart () construcindoable objects that maintain
aliases to th®@rawingView. As a resultHandle requires the/ domain parameter.

For that same reason, tliadoable interface requires th& domain parameter because
Undoable stores theDrawingView in which the activity to be undone was performed, in or-
der to undo the changes to that view only. This may slightly violate the Model-View-Controller
design, where model objects should not hold on to view objects, because there might be mul-
tiple views that need to be updated in response to changes in the model. At the same time, it
would be counter-intuitive for a user to undo a change in one view and observe changes in some
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VLS

* AbstractHandle provides default implementation for Handle interface.
*/
abstract class AbstractHandle<M,C> implements Handle<M,C> {

// The following would not typecheck since V not bound
V DrawingView<M,V,C> view;

%k
* Oparam © the x position where the interaction started
* @param y the y postition where the interaction started
* Oparam view the handles container
*/
void invokeStart<V>(int x, int y, V DrawingView<M,V,C> view) {
// Cannot store argument view in field this.view

Figure 4.9: JHotDraw: using method domain parameters to enforce object borrowing.

other view. Thus, ownership domain annotations expose the tighter coupling that the Undo fea-
ture introduced. Fid.4.10 shows in more detail the interaction betWesdi e, Undoable and
DrawingView.

An earlier empirical study of JHotDraw mentioned that “a common architectural mistake
[...] was to provideFigures with a reference to therawing or theDrawingView. FiguresS
do not by default have any access to either lhewing or the DrawingView in which they
are contained. This prevents them from accessing information such as the siz&nodiheg.
However, it is possible to overcome this problem by passing the view into the constructor of a
figure, which can then store and access this as required” (Kirk et al. 2006). Due to the stronger
coupling in Version 5.3, one could now get to thegure’s Handles through itshandles ()
method then get BrawingView through aandle’s UndoActivity objects.

Observation: Ownership domains can help identify singletons. While adding ownership
domain annotations, we discovered a curious instance of the Singleton design patieki:t’'s
constructor was not private, although it had a statietance() method. Indeed, there is a
unique instance obrawingEditor (the application itself) and anique IconKit (Fig.[4.11)
at runtime.

4.6.1.3 Expressiveness Challenges

Like any type system, the ownership domain type system has some expressiveness challenges,
that make it rule out presumably valid programs. In this section, | discuss some expressiveness
challenges | encountered while adding the annotations. Some of these challenges had been pre-

viously mentioned in the ownership types literature, é.g. &8xntand Poetzsch-Heffter 2 07).
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class ResizeHandle<M,V,C> extends LocatorHandle<M,V,C> {
@0verride
void invokeStart(int x, int y, V DrawingView<M,V,C> view) {
setUndoActivity(createUndoActivity(view));

}
VLS

* Factory method for undo activity. To be overriden by subclasses.

*/

M Undoable<M,V,C> createUndoActivity(V DrawingView<M,V,C> view) {
unique ResizeHandle.UndoActivity<M,V,C> undoActivity = new ResizeHandle.UndoActivity(view);
return undoActivity;

}

static class UndoActivity<M,V,C> extends UndoableAdapter<M,V,C> {

UndoActivity(V DrawingView<M,V,C> newView) {
super (newView) ;
.
}
}

class UndoableAdapter<M,V,C> implements Undoable<M,V,C> {
OWNED Vector<M Figure> myAffectedFigures;
V DrawingView<M,V,C> myDrawingView;

UndoableAdapter (V DrawingView<M,V,C> newDrawingView) {
myDrawingView = newDrawingView;
}
void setAffectedFigures(lent FigureEnumeration<M> newAffectedFigures) {
// the enumeration is not reusable therefore a copy is made
// to be able to undo-redo the command several time
rememberFigures (newAffectedFigures);
}
void rememberFigures(lent FigureEnumeration<M> toBeRemembered) {
myAffectedFigures = new Vector<Figure>();
myAffectedFiguresCount = O;
while (toBeRemembered.hasMoreElements()) {
myAffectedFigures.addElement (toBeRemembered.nextElement ()) ;
myAffectedFiguresCount++;
}
}
}
Figure 4.10: JHotDraw: concrete implementation classiehdle.

Observation: One object cannot be in more than one ownership domain. Ownership
domains, as most other ownership type systems, supportsamij)e ownership, i.e., an ob-

ject cannot be part of more than one ownership hierarchy. Proposafsuitiple ownership

anm.emnﬂ.éLZQb?) lift this restriction in other type systems. Ownership domains do not sup-
portownership transfe(Milller and Rudich 2007) either, i.e., an object’s owner does not change

—only unique objects can flow between any two domains.

As a result, one cannot define many fine-grained ownership domains to represent multiple
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class Iconkit {
static unique Iconkit fgIconkit = null;

VAL
* Constructs an Iconkit that uses the given editor
* to resolve image path names.
*/

unique

public Iconkit(unique Component component) {

fglconkit = this;
b

VAL
* Gets the single instance
*/

public unique static Iconkit instance() {
return fglconkit;

}

}
Figure 4.11: JHotDraw: annotating a singleton usiagique.

Mediator

Controller

Figure 4.12: JHotDraw: alternative top-level domains. Source: (Christensen 2004).
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Figure 4.13: Using public domains to group objects.

roles in design patterns. For instanJ:_e._(_C_hLisldhs_ed 2004) had suggested an alternative structuring
of the JHotDraw types, into a Model-View-Controller-Mediator-Adapter architecture[(Fig. 4.12).
However, it would have been more challenging to create top-level ownership domains to corre-
spond to such a decomposition, compared to the three top-level domai@Diir, VIEW and
CONTROLLER we adopted. Due to the single ownership model, placibga&ingEditor object

in aMEDIATOR domain would have prohibited it from also being in thHeEw domain.

Observation: An object cannot place itself in a domain it declares. An object cannot place
itself in an ownership domain that it declares. This is problematic for the root application object,
I.e., theJavaDrawApp instance (JavaDrawAppextendDrawApplication which in turn extends
DrawingEditor). To solve this problem, we created a fake top-level ckass: to declare the
MODEL, VIEW and CONTROLLER top-level ownership domains, then declared flh@aDrawApp
object in thevVIEW domain (Fig[4.B).

Observation: Public domains can be hard to use. Public domains make the ownership do-
main type system more flexible than awner-as-dominatotype system, e.g.mé al.

). Also, public domains are ideal for visualization because placing an object inside a public
domain of another object relates these objects without cluttering the top-level domains. However,
public domains are typically hard to use without refactoring the code. We started using them in
a few cases but quickly abandoned those attempts.

Since the Observer design pattern tends to make communication between objects implicit,
we attempted to represent listeners more explicitly using ownership domain annotations. For
instance, it might make sense to place thetener objects that abserver will notify in a
public domainLISTENERS on theObserver. This is because Bistener often needs special
access to thebserver, but usually does not need special access t&tibgect (Fig.[4.13).

JHotDraw uses a delegation-based event model. For instaneeswdangView calls the
methodfigureSelectionChanged to notify aFigureSelectionListener observer of any
selection changes. So it might make sense to declaf&EENERS public domain orCommand
to hold theFigureSelectionListener objects (Figl4.14). But the base implementation class,
AbstractCommand, implements th&igureSelectionListener interface, SO &ommand is-a
FigureSelectionListener. Thus aCommand object cannot split a part of itself and place it in
the public domairlLISTENERS that it declares.

Observation: Adding annotations to listener objects can be challenging. There were addi-
tional complications when trying to highlight the event subsystem in JHotDraw using ownership
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abstract class AbstractCommand<M,V,C> implements Command<M,V,C>,
FigureSelectionListener<M,V,C> ... {

public domain LISTENERS;

Figure 4.14: JHotDraw: attempting to define a public domain.

domain annotations. For examp@mmand, which is in theCONTROLLER domain, implements
FigureSelectionListener, and so doeBrawingEditor, which is in thevVIEW domain.

Consider the methodddFigureSelectionListener() (Fig. [4.15%). How would one
annotate the formal parametésl of type FigureSelectionListener? The parame-
ter should support both annotatiortsM,Vv,C> and v<M,V,C>. Indeed, the code calls
addFigureSelectionListener(), once with aCommand object, and another time with a
DrawingEditor object. Currently, using either annotation for the€l parameter generates an
annotation warning, because one or the other method invocation would not typecheck.

Indeed, |(Schfer and Poetzsch-Heffter 2007) previously identified the difficulty of adding
ownership domain annotations to programs involving listener objects and proposed a solution
using a variant of the ownership domain type system. Similarly, existential owndMCIarke

006) could increase the expressiveness in
this case. For example, (Lu and Potter 2006) would annotatinfthparameter with “any, to
typecheck both calls taddFigureSelectionListener (). Future work may include address-

ing some of these expressiveness limitations in the type system.

Observation: Adding annotations to static code can be challenging. Even a well-designed
program as JHotDraw had static code, which is challenging for many ownership type systems.
In particular, the statiiashtable cannot have th#, vV, andC domain parameters because the
domain parameters declared on the clagslDrawingView are not in scope for static members
(Fig.[4.16). Static members can only be annotated wiihired or unique, and these values
cannot flow to theMx, Vx or Cx method domain parameters. Currently, this code cannot be
successfully annotated using ownership domains, and the typechecker produces a warning.
Annotating the generiiashtable also requires nested parametefisshtable has three
domain parameters for its keys, values and entries. BoithingView andDrawingEditor take
M, V, andC as parameters. Although the number of annotations seems excessive and maybe argues
in favor of generic ownershid)_(Bolanin_ei[aLZbOG), the ownership domains faatigable
key, value and entries need not correspond tdfiveandC ownership domains.
One solution that is not type-safe would be to storeithghtable as0Object, then cast
down to aHashtable upon use. This would be the equivalent of raw types, but without re-
implementing them in the ownership domain type system. Another solution would be to refactor
the program to eliminate this static field since it gives any object access to altdhengView
andDrawingEditor objects. Since eliminating the static field would require a significant refac-
toring, perhaps another solution would be to support package-level, static ownership domains,
similar to confined types (Bokowski and Vitek 1999), or to combine both confinement and own-
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1 [k

2 * DrawingView renders a Drawing and listens to its changes.

3 * It receives user input and delegates it to the current Tool.

VI 74

5 interface DrawingView<M,V,C> extends DrawingChangeListener<M,V>... {
6 // Add a listener for selection changes

7 void addFigureSelectionListener(? FigureSelectionListener<M,V,C> fsl);
8 R

s

10

11 class StandardDrawingView implements DrawingView<M,V,C>, ... {

12

13 JSk*

14 * The registered list of listeners for selection changes

15 */

16 OWNED Vector<? FigureSelectionListener<M,V,C>> fSelectionListeners;
17

18 StandardDrawingView(V DrawingEditor<M,V,C> editor, ...) {

19 R

20 // DrawingEditor timplements FigureSelectionListener

21 // editor is in ’V’ domatin parameter, not °C’!

22 addFigureSelectionListener (editor);

23 }

24

25 /**

26 * Add a listener for selection changes. AbstractCommand implements
27 * FigureSelectionlListener. Command is in the ’C’ domain parameter!
28 */

29 void addFigureSelectionListener(? FigureSelectionListener<M,V,C> fsl) {
30 fSelectionListeners.add(fsl);

31 }

32}

Figure 4.15: JHotDraw: annotatingddFigureSelectionListener.

ership in one type syste@moon

Observation: Annotations may be unnecessarily verbose.Ownership domain annotations

tend to be verbose: e.g., formal method parameters need to be fully annotated even if they are
not used in the method body or used in a restricted way. This produces particularly unwieldy
annotations for containers of generic types.

In Fig.[4.1T7, the methodlearStackVerbose () indicates the current level of annotations
needed. It should be possible to leave out domain parameters when they are not really needed.
This may involve using implicit existential ownership types as in the methedrStackAny ().

The question mark annotation could mean that there exists some domain parameiers3,

d4, such that the formal method parametecould be annotated withent<d1<d2,d3,d4>>.

Using appropriate defaults, the annotations could probably be reduced to the level needed to
annotate a raw type, as shown in the methbehrStack ().
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class NullDrawingView<M,V,C> ... implements DrawingView<M,V,C> {

static unique Hashtable< ? DrawingEditor<?,?,7>,
? DrawingView<?,7,7>,
?> dvMgr = new ...

public synchronized static
Vx DrawingView<Mx,Vx,Cx>
getManagedDrawingView<Mx,Vx,Cx> (V1 DrawingEditor<Mx,Vx,Cx> editor) {
if (dvMgr.containsKey(editor)) {
Vx DrawingView<Mx,Vx,Cx> drawingView = dvMgr.get(editor);
return drawingView;
¥
else {
Vx DrawingView<Mx,Vx,Cx>newDrawingView = new NullDrawingView(editor);
dvMgr.put (editor, newDrawingView) ;
return newDrawingView;

}

Figure 4.16: JHotDraw: annotating static fields.

class UndoManager<M,V,C> {
J k%
* Collection of undo activities
*/
OWNED Vector<M Undoable<M,V,C>> undoStack;

void clearStackVerbose(lent Vector<M Undoable<M,V,C>> s) {
s.removeAllElements();

}

void clearStackAny(lent Vector<? Undoable<?,7,7>> s) {
s.removeAllElements();

}

void clearStack(lent Vector<Undoable> s) {
s.removeAllElements();
}
}

Figure 4.17: JHotDraw: reducing annotations that are not needed.

Observation: Manifest ownership can reduce the annotation burden. The current default-

ing tool annotatesString objects withshared. However, during the annotation process, we
found ourselves adding thsaared annotation to many other types suctFasat, FontMetrics,
andColor. For examplemanifest ownershim ), i.e., the ability to specify a global
per-type default, rather than an annotation for every instance of a type, could reduce the annota-
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tion burden in those cases, and may be worth exploring indutark.

Observation: Reflective code cannot be annotated.JHotDraw uses reflective code to se-
rialize and deserialize its state and such code cannot be annotated using ownership domains

(Aldrich et all 2002c).

Observation: Annotate exceptions adent. We were not particularly interested in reasoning
about exceptions, so we annotated exceptions themlwith. However, richer annotations are
possible, as illustrated by (Werner andili¢r|2004).

4.6.1.4 Annotation Summary

The annotations are checked by a type system in a modular fashion, one class at a time. The
annotation examples illustrate how a developer adding the annotations mostly provides local
hints. In particular, rarely does the developer require missing global information. Of course,
some of the harder annotations require computing some reachability, which is perhaps best left
for a tool.

4.6.2 Object Graph Extraction

While adding the annotations, | ran the static analysis to extract an object graph based on the
annotations, and used the extracted object graphs to visualize the annotations and refine them ac-
cordingly. Of course, as long as there are annotation warnings, the object graph may be unsound,
but it may still be useful.

During the case study, | made several observations, outlined in bold below. The requirements
for a runtime architecture (Section 1.8, Page 22) dictated some of the questions that the obser-
vations answer. A taxonomy for software exploration tools by Storéyldviet al. MI.

), but applied to runtime structures instead of code structures, inspired the others.

Observation: Flat object graphs do not scale. For comparison, | extracted object graphs for
JHotDraw using several existing static analyses that have publicly-available tools. For instance,
Fig.[4.18 shows the output of ®#BLE (Jackson and Waingdld 2001) on JHotDrawOWBLE
produces a complex, flat object graph where low-level objects Bugénsion andRectangle

appear at the same level as the root application objeetDrawApp. The ANGAEA output for
JHotDraw is even more complex (Fig. 4.19).

Observation: Some object graphs do not correctly reflect aliasing. There are other seri-
ous problems with \MBLE’s output. By design, \MBLE does not handle aliasing soundly.
For instance, V@MBLE can shows multiple nodes in the object graph for the same runtime
object. In Fig[4.1IB, there are multiplavaDrawApp nodes, highlighted in black. Similarly,
Fig.[4.18 confusingly shows a separ@imwingEditor instance, when it is the same object as
the JavaDrawApp instance at runtime (JavaDrawApextendDrawingEditor).

142 Chapter 4. Evaluation of the Object Graph Extraction



Figure 4.18: JHotDraw: thumbnail of the object graph obtained at compile time bpMBLE
(Jackson and Waingold 2001). The embedded image becomes readable after zooming in by 800%.

Observation: An OOG effectively abstracts objects by ownership hierarchy and by types
compared to a non-hierarchical object graph. After adding the annotations, | extracted the
OO0G in Fig[4.2D. The hierarchical object graph has many fewer objects in the top-level domains
compared to the flat object graph, because it collapses lower-level objects underneath other ob-
jects.

Collapsing many nodes into one is a classic approach to shrink a graph. However, the OOG
statically collapses nodes based on the ownership and type structures, and not according to where
objects were declared in the program. Moreover, it is possible to recover the substructure uni-
formly across all objects by increasing the visible depth of the ownership tree.

In principle, one could manually elide objects inOMBLE’s output (Fig[4.1B) to obtain a
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Figure 4.19: JHotDraw: flat object graph for JHotDraw obtained usimgNBAEA d@lﬂzy The
edges correspond to object references. The image is embedded postscript: to obtain a readable diagram,
view this document electronically and zoom in by at least 2400%

more abstracted diagram. Indeed, in many architectural extraction approaches, the developer
filters elements that satisfy certain query criteria to produce more abstracted views, e.g., by
collapsing all the nodes labeled with a common prefix according to some naming convention
into a single subsystem (Storey etlal. 1999). However, in both cases, the result would still be
a non-hierarchical view. Moreover, selecting and eliding from many objects at the same level
involves more trial and error. It is also unclear how a developer can decide which objects to
elide, and if doing so maintains soundness, i.e., the diagram still shows all objects and relations
between them.

Observation: Abstraction by trivial types can unclutter a diagram. However, the default

trivial types often leads to imprecision. By default, abstraction by trivial types is turned on.
The default list of trivial types includes types suchG&gect, Cloneable andSerializable

from the Java Standard Library. The extracted OOG (Eig]4.20) is imprecise since | am unable to
recognize in it many instances of the core types in the class diagranh (Fig. 4.2). Later on, we will
refine the list of trivial types to obtain an OOG that conveys more of our architectural intent.
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Figure 4.20: JHotDraw: OOG with abstraction by trivial types (the default list).

Observation: Without abstraction by types, an OOG can be very cluttered if there are
many related subtypes. Turning off abstraction by types produces an OOG that lacks abstrac-
tion (Fig.[4.21). It shows objects f®edoCommand andNewViewCommand, as well as objects

for ConnectionTool andCreationTool, among others. What we really wanted is to merge all
Command instances together and albol instances together, but not merge1 and Command
instances together.

For example, in JHotDrawgommandMenu declares &ector<Command>. Vector’s ELTS
formal domain is transitively bound t€ONTROLLER. Recall thatCommand is an interface. For
soundness, the analysis creates an edge frorddieandMenu object inSideVIEW to any sub-
type of Command inside CONTROLLER, such aRRedoCommand andNewViewCommand. Moreover,
aCommand contains another nest€@dmmand. So this results in an almost fully connected graph.
Because of the large number of top-level objects, this OOG, while hierarchical, is hardly an im-
provement over a flat object graph such as the or@\LE obtains from a bytecode program,
without relying on annotations (Fig._4]18). Thus, abstraction by ownership hierarchy is insuf-
ficient, and additional abstraction is needed to reduce the number of objects compared to a flat
object graph.
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_lentMain_MainModelStorable
_lentMain_MainViewComponent
_lentMain_MainModelHandle
_lentMain_MainControllerUndoable
_lentMain_MainModelAnimator
_lentMain_MainModelUndoManager
_lentMain_MainControllerToolListener
_lentMain_MainViewGridConstrainer
_lentMain_MainViewPainter
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Figure 4.21: JHotDraw: thumbnail of the OOG based on an instantiation-based view, but without abstrac-
tion by types. The embedded image becomes readable after zooming in by 800%.

Observation: With carefully chosen trivial types, an OOG effectively abstracts related
instances. | turned on abstraction by trivial types, initially using the default list of trivial
types, which produced an OOG where each display object merges too many field declarations
(Fig.[4.20).

ArchRecJ assists a developer in selecting non-default trivial types as follows. First, the de-
veloper graphically selects an object which appears to merge too many objects. The tool then
displays an inheritance hierarchy of the types of the field declarations that the selected object
merges. The general principle is that the developer must select a type that would cut the path
from an interesting leaf type in the inheritance hierarchy up to an uninteresting common ancestor
(Fig.[4.22).

| followed the above process to select the trivial types for JHotDraw. JHotDraw has its
own list of interfaces that many classes implement sucktasable andAnimatable, which
| proceeded to add to the list of trivial types. | also added several constant interfaces such as
SwingConstantsfl.

In addition, many types in JHotDraw extend or implement listener interfaces to realize the
Observer design pattern. For instance, both interf@ae@sand andTool are inCONTROLLER and
both extend the interfacéiewChangeListener. | also added many of the listener interfaces as

SInheriting from a constant interface is a bad coding practice, the Constant IntarfEipattern,
Item #17), and Java 1.5 suppoststic importsto avoid it. This is one more reason to avoid that practice.
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_lentMain_MainControllerUndoableCommand
_lentMain_MainControllerSelectAreaTracker
_lentMain_MainControllerUndoActivity
_lentMain_MainViewJavaDrawApp
_lentMain_MainControllerWindowTileCommand
_lentMain_MainControllerSelectionTool
_lentMain_MainControllerUndoableTool
_lentMain_MainControllerURLTool
_lentMain_MainControllerBorderTool
_lentMain_MainControllerDragTracker
_lentMain_MainControllerScribbleTool
_lentMain_MainControllerNullTool
_lentMain_MainControllerDragNDropTool
_lentMain_MainControllerFollowURLTool
_lentMain_MainControllerConnectionTool
_lentMain_MainControllerPolygonTool
_lentMain_MainControllerTextTool
_lentMain_MainControllerHandleTracker
_lentMain_MainControllerDeleteCommand
_lentMain_MainControllerGroupCommand
_lentMain_MainControllerRedoCommand
_lentMain_MainModelRectangleFigure
_lentMain_MainModelGroupFigure
_lentMain_MainModelRoundRectangleFigure
_lentMain_MainModelAnimationDecorator
_lentMain_MainModelImageFigure
_lentMain_MainModelTextFigure
_lentMain_MainModelPolygonFigure
_lentMain_MainModelLineConnection
_lentMain_MainModelEllipseFigure
_lentMain_MainModelBorderDecorator
_lentMain_MainModelBouncingDrawing
_lentMain_MainControllerUngroupCommand
_lentMain_MainControllerNewCommand
_lentMain_MainControllerChangeAttributeCommand
_lentMain_MainControllerDuplicateCommand
_lentMain_MainControllerBringToFrontCommand
_lentMain_MainControllerBufferedUpdateCommand
_lentMain_MainControllerStartAnimationCommand
_lentMain_MainControllerCutCommand
_lentMain_MainControllerCopyCommand
_lentMain_MainControllerPasteCommand
_lentMain_MainModelPolyLineConnector
_lentMain_MainModelShortestDistanceConnector
_lentMain_MainViewJPanel
_lentMain_MainControllerAlignCommand
_lentMain_MainControllerNewViewCommand
_lentMain_MainControllerSendToBackCommand
_lentMain_MainControllerExitCommand
_lentMain_MainControllerNewWindowCommand
_lentMain_MainControllerStopAnimationCommand
_lentMain_MainControllerToggleGridCommand
_lentMain_MainControllerPrintCommand
_lentMain_MainViewCommandChoice
_lentMain_MainViewWindowMenu
_lentMain_MainViewCommandButton
_lentMain_MainControllerSelectAllCommand
_lentMain_MainControllerUndoCommand
_lentMain_MainControllerWindowCascadeCommand
_lentMain_MainControllerSaveAsCommand
_lentMain_MainControllerDebugCommand
_lentMain_MainControllerInsertImageCommand
_lentMain_MainControllerLookAndFeelCommand
_lentMain_MainModelPolygonHandle
_lentMain_MainModelUndoableHandle
_lentMain_MainModelNullHandle
_lentMain_MainModelElbowHandle
_lentMain_MainModelTriangleRotationHandle
_lentMain_MainModelPolyLineHandle
_lentMain_MainModelRadiusHandle
_lentMain_MainModelFontSizeHandle
_lentMain_MainModelPolygonScaleHandle
_lentMain_MainModelChangeConnectionEndHandle
_lentMain_MainModelChangeConnectionStartHandle
_lentMain_MainControllerOpenCommand
_lentMain_MainModelOffsetLocator
_lentMain_MainModelArrowTip
_lentMain_MainModelAnimator
_lentMain_MainModelUndoManager
_lentMain_MainViewBufferedUpdateStrategy
_lentMain_MainViewGridConstrainer
_lentMain_MainViewSimpleUpdateStrategy

«interface»
EventListener

«interface» «interface»
Command Tool
N 7 N /

- .
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Figure 4.22: JHotDraw: makingViewChangeListener a trivial type.

trivial types.

With the refined list, the analysis mergesdoCommand and NewViewCommand, because
Command is their non-trivial LUB. Similarly, it merge€onnectionTool andCreationTool.
But the analysis does not mer@ennectionTool and RedoCommand because their LUB,
ViewChangeListener, is a trivial type (Fig[4.22). Thus, using the non-default trivial types
provides a more meaningful OOG (Fig._4.23). In that OOG, we recognize sefarate
and Command oObjects iNCONTROLLER. Similarly, MODEL shows distinctFigure, Handle and
Connector objects, all architecturally significant.

Because of JHotDraw's complex inheritance hierarchy, | had to fine-tune the list of trivial
types to achieve the desired level of abstraction—more so than for the other subject systems.
For example, another subject systems | analyzed, Aphyds (Sécfion 7.5), did not require using
abstraction by types.

Riehle previously studied JHotDraw and produced manually a code architecture_(Fig. 4.2).
Riehle posited that the original JHotDraw designers used the following techniques to present
the JHotDraw design in their tutorials: (ajerge interface and abstract implementation class,
because such a code factoring, although important for code reuse, is often unimportant from a
design standpoint; and (Bubsume a set of similar classes under a smaller set of representative
classes, because showing many similar subclasses that vary only in minor aspects often leads to
needless cIutteOO, pp. 139-140).

The OOG achieves results similar to the above heuristics. For instance, all rufatiaize
objects referenced in the program by tiendle interface, its abstract implementation class
AbstractHandle, and any of its concrete subclasses sucltla®wHandle or NullHandle,
appear as onbBandle display object in thelODEL tier. An OOG can sometimes suffer from a
precision loss: not alfiandle classes have a field reference tbaxator as Fig[4.R indicates.
Only NullHandle and its subclasses do. But since they were all mergedimtale, the OOG
shows an edge fromandle to Locator in Fig.[4.25.

4.6. Extended Example: JHotDraw 147



| .
tool(+): undoableAdapter(+): command(+): |
' Tool UndoableAdapter Command |
| 4 |
L _ _ _ ComwoleN 77 _ _ _
NN |
| jComboBox(+): constrainer: '
| JComboBox L GridConstrainer |
\I\‘ |
I A B |
| iMenu(+): painter: |
| JMenu , Painter |
autoscroll(+): versionRequester(+): jButton(+): |
Autoscroll VersionRequester JButton |
» v 5 4 |
|
[ — N\ — — — 77— " VvV - - - 0 ] =———— - = |
| |
| undoManager(+): endArrowTip:
UndoManager ArrowTip '
' B |
R 1] I
I T fAnimator: figure(+): fLocator: [
Animator L Figure \ OffsetLocator |
V] D £
|
P |
handle: _| connector:
Handle Connector '
|
|

Figure 4.23: JHotDraw: OOG with abstraction by trivial types (the fine-tuned list).

Observation: Abstraction by types can help identify unexpected subtyping relationships

in the program, some of which could point to design problems. With abstraction by trivial

types turned on, | was surprised that the OOG did not show any instancesHifgiinee type,
presumably one of the core types in the class diagram. | used ArchRecJ to obtain the field
declarations that a display object merges (See[Fig. 4.1) and used that information to determine
that one objecttextFigurel:Drawing, merged objects of typBigure andDrawing in the

MODEL domain.

| traced these field declarations to the code, and discovered by code inspection that indeed, the
base class implementing theawing interface StandardDrawing, extendS€ompositeFigure.
Thus, aDrawing is-aFigure, to enable nestingrawing inside anothebrawing. Even though
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the Release Notes for JHotDraw Version 5.1 mentioned thisitagts still unexpected. In the
framework package, interfacBrawing does not exten#ligure. In their tutorial, the JHotDraw
designers explicitly asked developers to “not commit todbepositeFigure implementation,
since some applications need a more complicated representa 1998, Slide #16).

I was slightly surprised when | inadvertently added interfaeedle as a trivial type. This
resulted in an OOG with one object finl1Handle (which directly implement$landle) and
another object for all instances of the concrete subclasses that implBangne by extending
AbstractHandle. While this result seemed counter-intuitive, that OOG was still sound: there
is no runtime object that can have both typeS1Handle and AbstractHandle, SO nO one
runtime object appears as two display objects in the OOG.

Observation: Abstraction by design intent types can achieve higher precision than abstrac-
tion by trivial types. Abstraction by trivial types can quickly unclutter an OOG, but is not
very precise. For instance, the JHotDraw OOG based on trivial types does not show distinct
Drawing andFigure objects (Fig[4.25). Presumably, both interfaces are architecturally rel-
evant. This is because the base class that implenbanising, StandardDrawing, extends
CompositeFigure, which in turn implement§igure. ButDrawing does not exten@igure

and is not a trivial type. Merging objects based on non-trivial LUBS, coupled with merging
objects after the fact for soundness, causes field declarations obiypeéng andFigure to

get merged irMODEL. An object may have multiple types, but some types may be more archi-
tecturally relevant than others. In this exam@eandardDrawing extendCompositeFigure

to enable nesting Brawing inside anotheDrawing. In this case, we would like to view a
StandardDrawing object as @rawing object, instead of &igure object.

JHotDraw'sframework package includes abstract classes and interfaces that define the core
framework. | added to the list of design intent types all the types ifthaework package and
ordered them from most to least architecturally relevant, Brgwing appears beforBigure.

When deciding whether to merge two field declaratiofsandardDrawing and
CompositeFigure, the analysis finds the design intent typeawing in the list, since
StandardDrawing iS a subtype ofbrawing. Similarly, it finds the typeFigure, since
CompositeFigure is a subtype offigure. BecauseDrawing is not a subtype ofigure,
the analysis does not merge objeBtsandardDrawing and CompositeFigure. But it does
merge StandardDrawing and BouncingDrawing. Similarly, it mergesEllipseFigure,
RectangleFigure, etc. But it keeps objects of ty@rawing andFigure distinct in MODEL
(Fig.[4.23), just as we desired.

Observation: An OOG provides architectural abstraction by showing architecturally sig-
nificant objects near the top of the hierarchy and data structures further down. A key
issue in architectural extraction is distinguishing between objects that are architecturally relevant
and those that are not. The OOG provides architectural abstraction by pushing lower-level ob-
jects underneath higher-level objects. As a result, the OOG does not show non-architecturally
relevant objects in the top-level domains.

An OOG shows objects inside domains, and provides an instance granularity larger than an
object. For instance, theONTROLLER tier includesCommand andTool instances, rather than a
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Figure 4.24: JHotDraw: OOG with abstraction by design intent types.

Controller component. In contrast, ti@EW domain also has BrawingView object.

There are three top-level domaingoDEL, VIEW and CONTROLLER. The OOG in Fig[4.25
seems to have the right level of abstraction since we recognize in it most of the core types from
the class diagram (Fig.4.2).

A rule of thumb in architectural documentation is to have 5 to 7 components per tier
(Koning et al. 2002). Thus, the number of objects in each domain is similar to the number of
components in tiers found in typical architectural diagraM@DEL has 14 objectsVIEW has 6
objects, an€ONTROLLER has 3 objects.

One could split the10ODEL domain into one domain faapplication modebbjects, such as
instances ofindoManager and StorageFormatManager, and one fordomain modebbjects,
with Figure, Handle and related objects, as in the Model-Model-View-Controller pﬂtern

The OOG (Fig[4.25) has only 23 objects in the top-level domains. In contrast, existing

Chttp://c2.com/cgi/wiki?ModelModelViewController
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compile time object graph analyses that do not rely on animosproduce flat object graphs that
show all objects at the same level, e.g.,heension andJavaDrawApp objects in Fig[ 4.18.

In JHotDraw,Point objects are immutable, so we annotated them wsitigue to pass them
linearly, as discussed in Sectiion 414.2. Hence, they do not appear in the OOG.

Observation: Hierarchy allows showing both the high-level structure of the object graph

and the low-level details at various levels of abstraction. Ideally, an architectural diagram
“can be read in 30 seconds, in 3 minutes, and in 30 minutes” (Koninglet al. 2002). For example,
Fig.[4.2% can be considered a 30-minute OOG.

There are two ways to control the level of detail. One is to control the unfolding depth of
the DisplayGraph, which affects the depth of the object substructures uniformly for all objects
starting from the root object. Because one object’s substructure may be more interesting than
that of some other object, ArchRecJ allows the developer to collapse the internals of a selected
object; in that case, the tool appends the symbol to that object’s label. In Fig._4125, we
manually elided the substructure of all the objects in the top-level domains excéptfaimg,
to highlight the Composite pattern. Insideawing, the OWNED domain shows several objects.

We recognize &ector<Figure>, fFigures, that maintain the list of sub-figures, and a lifted
edge fromfFigures to figure:Figure in MODEL. We chose to shoWuadTree’s substructure,
but elidedFigureAttributes’s substructure.

A 30-second OOG shows the three top-level ownership domaiOBEL, VIEW and
CONTROLLER (Fig.[4.26). In addition, dotted edges summarize the field reference edges between
objects inside those domains. This high-level overview shows how objedt®RL. refer to ob-
jects inVIEW to send them change notificationslEW objects have referencesMODEL objects
to display them. SimilarlyyIEW objects have references €ONTROLLER objects. CONTROLLER
has references M0DEL andVIEW, butMODEL has no references @ONTROLLER.

Observation: The OOG is extracted quickly and iteratively refined. Examining the ex-
tracted OOGs helped us refine the annotations. For instance, we initially fkacd: instances
in the CONTROLLER domain, but later moved them to tMBDEL domain, sincélandle is related
toFigure.

Assuming ownership annotations are already present, ArchRecJ can extract an object graph
with minimal end-user interaction. The user can optionally abstract the object graph by control-
ling the abstraction by types.

ArchCheckJ and ArchRecJ are sufficiently fast to allow a developer to iteratively refine the
extracted object graph. Computing the OOG in Eig, 4.25 takes less than 20 seconds on a modest
Intel Pentium 4 (3 GHz) with 2 GB of memory.

Observation: An OOG shows potentially useful information about the system’s runtime
structure. One could point to several useful pieces of information in the JHotDraw OOG.
¢ System decompositionDecomposition information is often useful to have. In the OOG,
each gray box corresponds to a canonical object that represents many instances at run-
time, and has instance substructure. This corresponds closely to the system decomposition
typically seen in an architectural diagram.
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Figure 4.25: JHotDraw: top-level OOG. The objects in the top-level domains are collapsed, except for
the object labeledigure:Figure.

For exampleDrawing is aCompositeFigure. Following the Composite pattern, it main-
tains a list of its sub-figures. Indeed, viewing the decompositiaseatFigurel reveals,
among others, an obje¢Figures of type Vector<Figure>, inside itSOWNED domain.
When performing system decomposition, the inside of a component is related to its out-
side. Indeed, there is a lifted edge fr@figures to textFigurel in the MODEL — since
textFigurel merges botl¥igure andDrawing.
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Figure 4.26: JHotDraw: Model-View-Controller summary. The dotted edges summarize field reference
edges between objects in the top-level domains.

TheDrawingView interface extends therawingChangeListener interface. Hence, the
OOG shows an edge from objefitisteners inside objecFigure to theDrawingView
object. Inside objedigure, objectfFigures contains the compositeigure objects.

* Object encapsulation: To highlight the cases of strict encapsulation, the OOG uses
a thick dashed border for a private domain that is not linked to a parameter. For in-
stance, in Fig[_4.25, th#ap object is encapsulated inside tR@NED domain of the
FigureAttributes object.

* Object references: The OOG indicates the presence or absence of field references be-
tween objects. The OOG highlights for instance how, in the MVC pattern, a view redraws
itself when the model notifies it of state changes. The core model objesting, main-
tainsfListeners, a list of DrawingChangeListener objects, that are notified whenever
theDrawing changes. InterfacerawingView extendDrawingChangelListener, hence
the edge fronfListeners to myDrawingView. A Tool oObject merges instances of type
Tool andUndoableTool. An UndoableTool iS a wrapper object aroundTaol object.

This explains the self-edge anol in Fig.[4.25.

We were surprised by the lack of field references fromMbEL to the CONTROLLER in
Fig.[4.26. In the base MVC pattern, a controller registers itself with the model to receive
notifications. Our explanation is that JHotDraw follows the MVC pattern, but slightly
modified in two ways. First, the Command Processor pat{em_(B_usghmadlﬁ_el_dl. 1996,
p. 277) is used to address the “close coupling of views and controllers to a model” in the
base MVC patterrl (Buschmann etlal. 1996, p. 142). Secobth@ingView acts as both

a view and a controller. This is a common optimization in the MVC pattern since the view
and the controller are tightly coupled. Indeed, in the JHotDraw “CRC Cards View”, the
designers mention th@trawingView “handles input events’m%, Slide #10),
which is a typical controller responsibility.

* Object soundness: while demonstrating soundness requires a formal proof, we visually in-
spected the OOGs to test the implementation of the ArchRecJ tool. For example, the OOG
shows only one canonical object to represent the application objgctDrawingEditor
(Fig.[4.25), unlike WbMmBLE's output (Fig.[4.IB), which shows tw@avaDrawApp and
DrawingEditor distinct objects.

Observation: A tool can enforce structural constraints on the OOG. We think the OOG,
together with effective change management, can help prevent architectural drift or erosion during
software evolution, more effectively than the program, with or without annotations. In the unan-
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notated program, changing the runtime structure is as siagp@ssing a reference to an object.
The ownership annotations help somewhat. But a developer can still add communication paths
by adding domain links, declaring additional domain parameters and passing additional domain
arguments at object allocation sites. Code reviews could audit such changes.

If the OOG reflects such architecture-modifying changes, the OOG makes it easier to trigger
an architecture review. A visual inspection of the OOG could look for suspected architectural
violations. Or once the OOG is converted to a C&C view in an ADL, the ADL can enforce global
constraints on the runtime structure (Section 7.8.9).

Using ownership domain annotations to enforce constraints may require code changes. For
instance, using a method domain parameter instead of a class domain parameter can prevent a
Handle from holding on to @rawingView object that is passed to it (Section 416.1). The OOG
can enforce such a constraint without requiring changing the annotations or the code. In addition,
domain links treat all communication equally, forcing developers to add domain links. But a
policy can allow only “weak” references betweBBDEL and VIEW to ensure that the “change
[%%agation is the only link between the model and the views and contr0|I_GLsL(ﬁu_$§h_mahn et al.

, p. 127).

4.6.3 JHotDraw Summary

JHotDraw has a complex inheritance hierarchy and implements many design patterns. How-
ever, | was able to add annotations to it, and extract hierarchical object graphs that convey more
architectural abstraction than any of the previous flat object graphs.

4.7 Extended Example: HillClimber

By many accounts, JHotDraw is the brainchild of object-oriented analysis and design (OOAD)
experts. In the next case study, | evaluated using the annotations and the static analysis on a
subject system that OOAD novices designed.

4.7.1 About HillClimber

The second subject system, HillClimber, is a 15,000 line Java application that was developed
by undergraduates at the University of British Columbia (UBC). HillClimber is part of a col-
lection of Java applications to graphically demonstrate artificial intelligence algorithms, built on
the CIspace framework (Poole and Macworth 2001). In particular, HillClimber, demonstrates
stochastic local search algorithms for constraint satisfaction problems. HillClimber is also inter-
esting because it uses a framework and its architectural structure had degraded over the years.
In HillClimber, the applicatiorwindowuses aanvasto displaynodesandedgesof agraph
to demonstrate algorithms for constraint satisfaction problems provided leyntiee.
| extracted a UML class diagram from the HillClimber implementation using Eclipse UML

6) (Fig_4.27).
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Figure 4.27: HillClimber: partial UML class diagram obtained from the original implementation using
Eclipse UML Mﬂz&&. This diagram does not reflect some types introduced during refactoring,
such adGraph, IHi11Graph andICanvasMediator.

4.7.2 Annotation Process

In this section, | briefly discuss the annotation process for HillClimber.

4.7.2.1 Annotation Overview

| organized the HillClimber objects into the following domains:
* DATA: stores the graph objects, namely instanceSraph, Node, etc., and those of their
subclassedjillGraph, HillNode, €etc.;
* UI: holds user interface objects;
* LOGIC: holds instances dfiil1Engine, Search and subclasses thereof, and associated
objects.
While adding annotations to HillClimber, | refactored the code to reduce the coupling be-
tween some of the objects thi@ andDATA domains, as | discuss below.

4.7.2.2 Annotation Examples

Observation: Ownership domains expose implicit communication. In HillClimber, adding
ownership domain annotations exposed covert object communication through base classes from
two parallel inheritance hierarchies. During an early iteration, we parameterized the base class
GraphCanvas by theUI andDATA domain parameters. We then realized tteiph, the base

class forHil1Graph, required theyI domain parameter (Fig._4.28). Cla&saph needed th&1

domain parameter only to properly annotateraphCanvas field reference, which we did not
expect. In turn, this revealed thii11Graph andHillCanvas were communicating through
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/**¥x4%x% Before programming to interface * ki k¥ k*/

class HillNode<UI,LOGIC,DATA> extends Node<DATA> {
DATA HillGraph<UI,LOGIC,DATA> hillGraph;

}

/*Fxxdkxk After programming to interface ¥ k¥ kkxkk/

class HillGraph<UI,LOGIC,DATA> extends Graph<DATA>
implements IHillGraph<DATA> {

¥

interface IHillGraph<DATA> extends IGraph<DATA> {
X

class HillNode<DATA> extends Node<DATA> {
DATA THillGraph<DATA> hillGraph;
}
Figure 4.28: HillClimber: refactoringiillGraph to program to an interface.

their base classé&aph andGraphCanvas. In the end, | moved the referencedpaphCanvas
from Graph to HillGraph and generalized it as afHillCanvas reference by extracting an
interfaceIHillGraph from HillGraph. As a result, the clas&raph no longer needed thel
domain parameter.

Observation: Ownership domain annotations highlight tight coupling and promote decou-
pling code. Ownership domain annotations programming practices that decouple code, such
as programming to an interface, or using the mediator pattern, as we discuss below.

Programming to an Interface. It is recommended to “refer to objects by their interfaces”

, ltem #34) since interfaces can reduce coupling between classes by splitting intent
from implementation. When adding annotations to an interface requires fewer domain parame-
ters than annotating the corresponding class, the annotations can enforce this idiom. In particular,
an implementation class can require a private ownership domain to be passed as an actual value
for one its parameters. Since a private ownership domain cannot be named by an outside client,
the client is then forced to use the interface which does not require these parameters.

For HillClimber, we used the technique of hiding the extra ownership domain parameter
behind an interface, to force a client to access an object only through the interface—the client
may not even cast the interface reference to an implementation class.

The original implementation for clasii1l1Node had a field reference of typ&il1Graph.
However,HillGraph took the three domain parametérs, LOGIC andDATA, which required
passing all those parametersital 1Node (Fig.[4.28).

This demonstrates that encountering an unexpected domain parameter while adding the anno-
tations often indicates unnecessary coupling. For instance, why shioliliode require theuT
domain parameter? Thus a lengthy domain parameter list can be an objective measure of a code
smell tAbi;AnIo_un_el_dlLZD_O_'}’a). Furthermore, ownership domain annotations can help a devel-
oper lower the coupling by suggesting which specific type declarations need to be generalized to
shorten the list of domain parameters on the enclosing type.
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abstract class Entity<DATA> {
DATA Graph<DATA> graph; // parent graph

}
class Node<DATA> extends Entity<DATA> {

int getHeight () {
return graph.getCanvas().getFontMetrics()...;
}
}
Figure 4.29: HillClimber: before using a mediator.

In HillClimber, one solution was to extract dafiillGraph interface from clasfillGraph
that requires only thédATA domain parameter and makeHallNode object reference the
HillGraph object through th&Hil1Graph interface. We decided against carrying this refactor-
ing further and eliminating theI andLOGIC domain parameters afillGraph itself.
SinceHillGraph, HillNode, etc., form a parallel inheritance hierarchyGtoaph, Node, etc.,
respectively, a similar refactoring was performedGafaph by extracting alGraph interface—
althoughGraph andIGraph both take the domain paramet&TA (Fig.[4.28), so programming
to an interface would not hide any domain parameter.
We observed tightly coupled code throughout HillClimber. Similarly, we were surprised that
a dialog clas§ontDialog required theDATA domain parameter. It turned out tiRintDialog
had a field reference declared with its most specific typgphCanvas. In some cases, it is
possible to generalize the type of the reference, e.g.jase. awt . Frame to eliminate the need
for the domain parameter. Howeve@gntDialog needed access to some of theaxphCanvas
functionality, so this required a different solution, namely, using a mediator, as | discuss below.

Mediator Pattern. Defining an interface is sometimes insufficient to decouple code since
referring to an object through its interface still requires access to the domain the objectis in. One
solution is to use the Mediator design pattém_(ﬁ_ammalb_t_aﬂ 1994, p. 273), as shown here.

In the original HillClimber implementation (Fi 9), vde obtained a reference to a
GraphCanvas, and this violates the Law of Demetm’mw%) which states
that objects should talk only to their immediate neighbors.

Extracting an IGraphCanvas interface from GraphCanvas would not work, as the
IGraphCanvas reference would still need to be annotated viith which is not in scope or a
domain parameter. Moreover, the implementatiogeafFontMetrics () could not be moved to
Graph as it required access to objects in tiiedomain (Fig[4.30).

Instead, | defined a mediator (Fig. 4. 3&}aphCanvas initializes the mediator, anEhtity
andNode can then use the mediator (Fig.4.32).

4.7.3 Object Graph Extraction

| used the extracted object graph to fine-tune the ownership domain annotations in the program
and reduce the number of objects in the top-level domains [(Figl 4.33), using the strategies dis-
cussed in Sectidn 4.4.2. Using HillClimber, we reconfirmed many of the previous observations.
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interface IGraphCanvas {

}

// Hide domain parameter UI behind interface

class GraphCanvas<UI,DATA> implements IGraphCanvas {
}

abstract class Entity<DATA> {
UI IGraphCanvas canvas; // UI unbound

X
class Node<DATA> extends Entity<DATA> {

int getHeight() {
return canvas.getFontMetrics()...;

}
}
Figure 4.30: HillClimber: extracting an interface (bad attempt).
J**
* Mediator interface
*/

interface ICanvasMediator {
shared FontMetrics getFontMetrics();
}

VLS

* Mediator tmplementation class

*/
class CanvasMediatorImpl<UI,DATA> implements ICanvasMediator {

UI GraphCanvas<UI,DATA> canvas = null;

CanvasMediatorImpl (Ul GraphCanvas<UI,DATA> canvas) {
this.canvas = canvas;

}

shared FontMetrics getFontMetrics() {
return this.canvas.getFontMetrics();
}
}
Figure 4.31: HillClimber: defining a mediator.

Observation: In practice, there are several opportunities to use strict encapsulation to re-

duce the clutter. We reduced the clutter in th@ATA domain by pushing more objects into
private domains of other objects. For instance, we plaeegh: Hil1lHeap inside a private do-

main ofgraph:HillGraph. We also pushed sever&ctors into private domains and ensured

that the other references to them wetd que (they were actually passed linearly between ob-
jects). In a few cases, we changed the code to prevent representation exposure by returning a
copy of an internal list instead of an alias.
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class GraphCanvas<UI,DATA> extends ... {
DATA CanvasMediatorImpl<UI,DATA> mediator;

DATA ICanvasMediator getMediator() {
return mediator;

}

}

abstract class Entity<DATA> {
DATA ICanvasMediator mediator;

b
class Node<DATA> extends Entity<DATA> {

VL]
* Gets the height of this node.
*

*/
protected int getHeight() {
return mediator.getFontMetrics().getHeight() + ...;
}
}
Figure 4.32: HillClimber: using a mediator.

Observation: In practice, there are several opportunities to use logical containment to re-

duce the clutter. We defined public domains to reduce the number of top-level objects. A
public domain can group related objects, by pushing the contained objects down the ownership
tree and removing them from the top-level domains, while keeping those inner objects accessible
to objects that can access the outer objects. For example, ebjacth has aHEURISTICS pub-

lic domain with two array objects inside it; its peer objaeuiristics insideLOGIC accesses

those array objects direatly

As an aside, | could have used a static analysis to infer the Bt&D andunique anno-

tations, e.g. L(LLu_and_MﬂanQLh_ZdOE_Mﬁ_and_EdhaLimO?) But today’s annotation inference
algorithms cannot infer meaningful domain parameters or public dorrhams_(Aldﬂ_cH_el_aJJ 2002c).

Observation: An OOG can provide meaningful architectural abstraction. The Hill-
Climber OOG (Fig[4.33) shows clearly the core top-level objetiadow, canvas, engine
andgraph. Similarly, theSearch object in theL0OGIC domain merges many instances of several
sub-classes of the classarch such a®iCHSearch, RandSearch, etc.

| had introducedCanvasMediator during a refactoring to decouple the code. THeadow
object merges several user interface objects such as dialogs, and illustrates abstraction by types.

7Such an object relation would be prohibited by an owner-as-dominator type system, e.g., (Clailke et al. 1998).
This is one case which illustrates the need for the additional expressiveness of logical containment using public
domains in the ownership domain type system.
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Figure 4.33: HillClimber: top-level OOG.

4.7.4 HillClimber Summary

The HillClimber system is not as well-designed as JHotDraw. Still, | was able to add annotations,
run the static analysis, and extract OOGs that provide meaningful architectural abstraction and
have sufficient precision.
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4.8 Field Study: LbGridE

As a research method, a field study can evaluate how well a software tool or method works with
real code and users (Kitchenham et al. 1995).

4.8.1 Overview

The case studies | conducted on the previously described object-oriented systems assessed both
the usability of the technique and the engineering tradeoffs that it entails, and led to a more
comprehensive week-long on-site field study with an industrial partner. During the field study,
we extracted the object graph of a 30-KLOC portion of a large 250-KLOC Java system.

At a high-level, the field study involved selecting a target portion of the system, communicat-
ing with the original developers of the code to understand their design intent, adding annotations
to the code, typechecking the annotations, running the static analysis to extract an object graph,
showing snapshots to the developers, and incorporating their feedback, by refining the annota-
tions and the extracted object graphs.

4.8.2 Research Questions

| refer to the person who conducted the field study, i.e., myself, asxiherimenter. Thdevel-
operis the person who was familiar with the code being analyzed.

In addition to the earlier questions (Section 4.2, RPagé 121), we wanted the field study to help

answer the following research questions:

* Will an outside developer understand abstraction by ownership hierarchy and by types?

* How mucheffort will it take? How longbefore one can obtain initial architectural dia-
grams?

* Can one add annotations for the top-level object graph, then extend those annotations down
to the rest of the system?

* Can we meaningfully analyze only a part of a system?

* Can we evaluate qualitatively the precision of the analysis by having a developer visually
examine the output OOG? For instance, does the OOG omit objects that the developer
expected to see? Or does the developer not recognize some of the objects that show up in
an O0G?

* How can we improve the usability of the tools?

4.8.3 Setup and Methodology

Pilot constraints. The SCHOLIA tools are plugins in the Eclipse Java development environ-
ment. So, in terms of selecting the subject system, we required a module that is Java-based.
Since we were adding the annotations manually, we required a module under 50 KLOC in size.
In some of the earlier evaluations, e.g., HillClimber (Sedtion 4.7), we refactored the subject sys-
tem while adding the annotations. During the field study, we wanted to extraastts®bject

8Portions of this section appeared|in (Abi-Antoun and Aldrich 2008b)
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graph. We also did not want to explain the annotations or @wgcstnalysis to the developers,
nor did we expect to involve them with the tools. The developers would be free to refactor based
on any insights they gained from the extracted architecture.

The plan. Architectural extraction typically starts by gathering or eliciting documentation from
developers who are familiar with the code. Ideally, a developer would document the designed
or target runtime architecture, but realistically, we knew that we may have to settle for a class
diagram.

Data collection. The experimenter measured the effort by keeping track of the different activ-
ities in a time log, and measured the end-to-end time, minus interruptions. He also kept a log
of annotation cases that revealed facts about the code such as representation exposure or tight
coupling.

The experimenter kept track of the iterations, and what he changed between iterations, such
as changing the settings or inputs to the tools. He saved intermediate snapshots of the extracted
object graph. He also wrote detailed notes to simulate the thinkaloud protocol (he could not
actually speak as he was sitting with others in an open-floor space). After the study, we used the
Eclipse history data for each file to analyze how the annotations evolved.

Subject selection. The experimenter ran the jMetra (hyperCision|Inc. 2008) code measurement
tool on the Java code base, and identified a module of around 30KLOC, excluding unit test code,
which we refer to as LbGrid. LbGrid is a multi-dimensional feature-rich grid control that consists
of around 300 classes (jMetra includes only static inner classes in the class count, and LbGrid
uses non-static inner classes extensively).

In previous evaluations, we used code bases developed prior to Java 1.5 and refactored them
to use generics to improve the precision of the analysis. In this case, the code already used
generic types. As a bonus, a developer who was familiar with that module would be available.

Static analysis. At no time during the field study did the experimenter run the system. That
would have required setting up a complex client-server system, and training on how to use the
system to get good coverage. So using static analysis simplified the setup considerably.

Plan vs. actual. The study did not go exactly as planned. The developer familiar with LbGrid
was not available on the first and the last days of the study. Generally, the experimenter had
limited access to the developer. We estimate the developer spent around 4 hours, including the
initial meeting, designing and discussing the code architecture, answering occasional questions,
examining snapshots and responding to our emails.

Target architecture. The experimenter met with the developer for two hours, and gave him an
overview of the architectural views we were extracting. The developer said he used and liked
tools that extracted class diagrams from code. The experimenter asked the developer to draw
the designed runtime architecture for LbGrid. The experimenter wanted to use the designed
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Figure 4.34: LbGrid: high-level module view, obtained using Lattix LDIO8). A box
represents a Java package.

architecture as a guide while adding the annotations, by following the same top-level architectural
tiers and the same architectural decomposition. Unsurprisingly, the developer drew an abstracted
class diagram showing the core types in LbGrid (Fig.}4.35).

4.8.4 Annotation and Extraction Process

We now discuss the process the experimenter followed to annotate LbGrid and extract an object
graph.

Isolating the module. The experimenter configured several stop-analysis files to have the tools
analyze only the compilation units from a list of selected packages and exclude others.

Annotation and extraction methodology. The experimenter used a tool to generate initial
default ownership domain annotations for the selected Java files (See Appendix A.4.4). He then
completed the annotations mostly manually, as we discuss in the next section. At times, he used
a utility to globally find and replace annotations across several files. He then used mainly the
two tools, ArchCheckJ (Sectidn 4.8.1) and ArchRecJ (Seétionl4.3.2). He used ArchCheckJ to
validate the annotations and ArchRecJ to extract OOGs.

Deciding on the annotations. The best annotations produce a view comparable to what an
architect might draw for an architecture. Ideally, an architect familiar with the system would
propose the runtime tiers for the system. In this case, it seemed that having the developer provide
a target runtime architecture would be difficult, since he drew an abstracted code architecture. So,
instead, the experimenter studied the developer’'s diagram, and suggested organizing the objects
according to the following top-level domaingI, MODEL, LOGIC andDATA (boxes with dashed
borders in FigC4.36). The developer confirmed that the proposed architectural tiers seemed
reasonable. Another senior developer who was familiar with other parts of the system also agreed
with the high-level organization the experimenter proposed for the LbGrid architecture.
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Figure 4.35: LbGrid: developer’'s diagram, which | annotated manually.
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Figure 4.36: LbGrid: top-level domains which | suggested, shown with a dashed border.
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Then, the experimenter started mapping objects to domairssa #st approximation, he
mapped types to domains. Of course, not all the instances of a type, sudktgsalways
appear in the same domain. Also, LbGrid has several classes that are instantiated only once,
e.g.,Workspace. In many cases, he used the package declaration as a guide. For instance, the
experimenter often annotated an instance of a class declared datheackage to be in the
DATA domain, or the correspondirigdomain parameter. The trickier cases were instances of
classes from nondescript utility packages that gave no indication about which runtime tier they
belonged to. The experimenter organized the core types as follows:

* UI: instances ofbTable, etc.;

* MODEL: instances of.bTableModel, etc.;

* LOGIC: has instances dfivotManager, etc.;

* DATA: has instances &forkspace, Predicate, etc.

Once the experimenter figured out the top-level domains, he propagated them as domain
parameters, as needed, using the mnemonic domain parameter waiore$I, M for MODEL, L
for LOGIC, andD for DATA.

Prioritizing the annotation warnings. The experimenter was not planning on adding domain
links to LbGrid, so he turned off the corresponding checks for the duration of the field study. Oth-
erwise, except for the implicit defaults or those added by the annotation defaulting tool, every
reference type must be annotated. Enabling all the annotation checks at once would generate tens
of thousands of warnings in the Eclipse problem window, and bring Eclipse to a standstill (the
experimenter was running the tools on a modest Intel Pentium 4 (2 GHz) with 1.5 GB of mem-
ory). Moreover, one missing or incorrect annotation in the code could potentially produce several
warnings. So the experimenter gradually enabled various annotation checks, and addressed an-
notation warnings from the most to the least important ones, as we discussed in Section 4.4.1

(Pagd 125)

Refining the annotations. In the early iterations, we placed most objects in one of the domain
parametersy, M, L or D. Since each domain parameter was transitively bound to a top-level
domain, e.g.U to UI, M to MODEL, these early snapshots showed many objects in the top-level
domains. But these early diagrams helped the experimenter refine the annotations and move a
few objects between the top-level domains. In later iterations, he defined several private and
public domains, and moved secondary several objects from a top-level domain to a private or
public domain of a primary object, or passed objects linearly, to reduce the number of top-level
objects, as we discussed in Secfion 4.4.2 (Pagk 126).

Strict encapsulation. The experimenter identified any encapsulated objects and placed them in
private domains. As a first approximation, he recognized some of these objects if the containing
class used them only inside its private representation, and did not have any accessors that returned
them.

Logical containment. The developer’s feedback helped the experimenter define several public
domains with architecturally meaningful objects. Using logical containment often involved only
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localized changes to the annotations. For instance, thecpadninainRENDERERS On LbTable
holds objects of typ@extCellRenderer and ColorCellRenderer. The EDITORS domain
holds objects of typ&extCellEditor andColorCellEditor. In contrast, the module view
shows all these types in omenderer package (Fid._4.34).
The experimenter defined other architecturally significant public domains, such as:
* LbTableModel has aHEADERS domain to holdieaderGridPath andHeaderGroup 0b-
jects, among others;
* TableActionManager has anACTIONS public domain for LockCellsAction and
FillCellAction Objects, etc.

Linear objects. He used theinique annotation where applicable. For example, LbGrid uses

the following recurring pattern: a method performs a query, allocates a container to store the
query result objects, then another object iterates the container elements then discards the con-
tainer without storing a reference to it.

Questions to the developer. The experimenter had limited interaction with the developer. Oc-
casionally, he asked the developer the following questions. The first question helped the experi-
menter identify objects that appear in the wrong conceptual tier. The second question guided the
abstraction of the object graph by ownership hierarchy.

* Does this instance of typebelong to domaim?

* Within this domair, is this objeck conceptually part of this other objegtso | can push

X undery?

The experimenter also asked the developer to identify the root class from which to derive the

object graph. The developer pointed him to a unit test class.

4.8.5 Results

In this section, | discuss the field study results, in terms of the quantitative data we measured
(Sectio 4.8.511), and the qualitative data we gathered during our interaction with the developer

(Sectior{4.8.5]2).

4.8.5.1 Quantitative Data

Of the time spent on-site, the experimenter spent about 30 hours adding the annotations, type-
checking them, and examining snapshots of the extracted object graphs. After the experimenter
returned from the field trip, the developer emailed him some comments regarding one of the
extracted object graphs. The experimenter spent another 5 hours adjusting the annotations to
incorporate the developer’s suggestions and address high-priority annotation warnings. At that
point, the top-level object graph still did not fit on one letter-size readable page, such as the de-
veloper’s code architecture (FIg. 4137). There were still around 4,000 annotation warnings, most
of them minor.
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ences.

4.8.5.2 Qualitative Data

The field study allowed us to make the following qualitative observations.

Observation: The developer understood assigning objects to runtime tiers. The developer
seemed comfortable thinking with a granularity coarser than an object or a class. He drew lay-
ers in his diagram that roughly correspond to packages, similarly to a high-level module view
(Fig.[4.33). He understood mapping objects to domains, and even suggested moving some ob-
jects from one domain to another.

“The following components should move to different contain@ssisLayoutInfo
[from MODEL] to LOGIC.”

Observation: The developer understood abstraction by ownership hierarchy. In particu-

lar, the goal is to show only architecturally significant objects in the top-level domains. The
developer understood abstraction by ownership hierarchy, namely, pushing secondary objects
underneath primary objects, as evidenced by his statement:

“The following are too low-level to be at the outermost ti€el1Position, ...

For example, he recommended objects of typEableHeaderGroup and
TableHeaderGridPath be pushed underneath thHebTableModel object in the MODEL
tier. When provided with a printout of an extracted object graph, he expressed interest in
viewing an object’s sub-structure. At the time of the study, we did not have a standalone
viewer. Since then, we implemented an interactive viewer that allows drilling into an object’s
substructure, zooming, scrolling and panning.

The developer also noticed when a top-level domain showed too many objects:

“All components inDATA are also too low-level to be at the outermost tier, but | can’t
think of a larger component that you can expand to get to them. Not sure how to
represent this.”

To address the developer’s last comment aboubAna tier, it is possible to elide a domain’s
structure, as in Fig. 4.838. The tool currently shows summary edges between collapsed domains.
In future work, we will implement a feature to show edges between an object and a collapsed
domain.
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Observation: The developer understood object merging. By design, a SHOLIA object

graph conservatively merges into one object all the objects within a domain that may alias, based
on their type information. For instanceBarChart object in theVIEw domain merges the ob-

jects referenced through the stener interface, the base clagdstractChart or its concrete
subclas®arChart, because they may alias (Fig. 2.3(a)).

The ownership domain type system guarantees that two objects in different domains can
never alias, however, so the analysis keeps those objects as separate.

Riehle posited that designers often use the following techniques to abstract their code archi-
tectures. They merge interface and abstract implementation class—although important for code
reuse, such a code factoring is often unimportant from a design standpoint. They also subsume
similar classes under representative classes, to avoid the clutter of showing many similar sub-
classes that vary in minor aspeOOO, pp. 139-140). Indeed, the developer seems to
have used the above techniques in his own class diagram. For example, he used “xxx” in the
name of a few classes to represent multiple elided subclasses. He also used a multiplicity-like
symbol to designate many more subclasses that he did not show on the diagram.

So it is unsurprising that these heuristics seemed also intuitive in a runtime view. However,
SCHOLIA achieves similar results to those heuristics by merging objects in a domain based on
their type, to soundly handle possible aliasing.

Observation: The extracted object graph shed some light into dark corners of the system.
Upon examining an extracted object graph, the developer identified several classes that were
candidates for deletion.

“... FormulaEditor (will be deleted shortly).”

Observation: The developer seemed unsure about certain object communication A de-
veloper often has a conceptual model of their architecture that is mostly accurate, but may be a
simplification of reality((Murphy et al. 2001; Aldrich etlal. 2002a). Indeed, the LbGrid developer
drew some connections with question marks. An extracted object graph might help him confirm
the presence or absence of communication.

Observation: A runtime view may help with certain coding tasks, but not with others. The
developer was skeptical of the value of the extracted object graph (we recorded his opinion below
before we gave him a standalone interactive viewer):

“To step back a little and look at the diagram itself, so far, | can't see the value of a
runtime view. | suspect that this will make more sense if | were to be able to drill
down into the components. Or do you think that | should be able to see something
in the outermost tier itself?”

We emphasized to the developer that the intent of a runtime view is to complement, not
replace, a class diagram. Since he mentioned sequence diagrams, we explained to him that a
sequence diagram is a kind of runtime view that shows method invocations for a specific use
case, but it is not a complete runtime architecture. A more closely related diagram would be
an object diagram which shows object instances exclusively, which (Gamma et al. 1994) use to
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explain the standard design patterns. We suggested to tleéogdev that he could think of an
extracted object graph as a global object diagram, for the whole system, and one where each box
is an aggregate of objects.

To address the developer’'s comment, we showed him how hierarchy enables obtaining a high-
level object graph (Fid.4.838), which makes explicit several global structural constraints that are
implicit in the code, e.g., that objects in thaTA domain do not reference objects in t@DEL
domain.

When reasoning about modifiability, a code architecture may be more helpful than a runtime
architecture. The developer may have been focused on such tasks because he drew a detailed
class diagram mostly from memory, and referred to Eclipse only occasionally to verify the name
of a type. He seemed apologetic about the current design having many subclasses and a parallel
inheritance hierarchy. In the current designidTable extendsBloxTable extends.bTable.

A parallel inheritance hierarchy exists betwe®ri dTableManager, BloxTableManager and
LbDefaultTableManager.

He mentioned that one could refactor away some of those classes and move their functionality
into their super-classes (the rationale for the current factoring is that super-classes are oblivious
to accessing data from a workspace). He even asked the experimenter if he could think of a
design that did not require proliferating sub-classes.

Since he was very familiar with the LbGrid code, he did not immediately see the value of a
runtime architecture. We posit that because the runtime architecture abstracts away the factoring
into interfaces, base classes and subclasses, it may actually be simpler to explain to a developer
who is completely unfamiliar with the code, such as a new hire.

Observation: A runtime architecture can help explain listeners. A runtime architecture can

help answer questions that a developer might have about an unfamiliar code base, such as: What
instances point to what other instances? Thus, an object graph diagram can help explain what ob-
jects get notified during a change notification. In many cases, UML class diagrams or call graphs
do not help answer such questions, because they do not show instances. For example, using the
Listeners system (Chapter 2), an object diagram (fFigs. 2[3(@), [2.3(b)) highlights the reference
structure betweepieChart, barChart andmodel better than a class diagram (Fig.]12.2).

LbGrid uses listeners heavily. Several classes have lists of listeners and implement various
listener interfaces. Neither the developer’s diagram nor an automatically generated class dia-
gram, explain how the listeners work in LbGrid. We posit that this aspect of the architecture
would be particularly challenging for a new hire. In future work, it may be useful to identify
bug reports or enhancement requests that require understanding the listeners in LbGrid, and for
which the extracted runtime architecture would be helpful.

Observation: Picking the right labels for architectural elements is crucial. Without care-

ful labeling, developers may not recognize the models that a reverse engineering tool extracts
I_ZD_dl). Indeed, during the field study, the developer insisted on specific labels for

the various tiers, e.g., uS@MODEL instead oMODEL (we still useMODEL here for consistency with

prior documentation). In particular, with every OOG with which he was provided, he seemed to

always visually scan the OOG, looking for instances of the core types from his class diagram:
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“Where isGridPanel? | don’t see it here.”

Observation: The developer expected to see multiplicities on the object graph.Indeed, the
developer’s diagram has specific multiplicities on several associations. Many reverse engineering
tools show multiplicities on class diagram. The developer suggested that showing this informa-
tion on the object graph would be helpful, so this is a feature worth considering in future work.
Of course, there are limits to the information that can be extracted statically from the code. In
particular, a static object diagram is never going to show multiplicities that are as accurate as the
ones in a dynamic object diagram, but the latter reflect only specific program runs.

Observation: The developer expected the tools to render a judgement on the recovered
architecture. Many architectural extraction case studies evaluate the quality of a recovered
architecture by computing some metrics, e.g., on dynamic couﬂlung_(Aﬂsthdm_a]I 2004). An-
other avenue would be to check and measure the structural conformance of the built architecture
against a designed one, but this requires establishing the target runtime architecture. This is the
approach that SHoLIA adopts, as described in the following chapters.

Observation: The developer seemed to favor an unsound abstracted task-specific view over

a sound runtime architecture. A tool that extracts a class diagram automatically would show

at least 300 classes for LbGrid, organized by packages. However, the developer's manual dia-
gram had many fewer types. So the question is whether a runtime architecture should soundly
reflect all objects and relations that exist at runtime, or only those that are of current interest to
the developer. In a principled approach liker®LIA, the main abstraction technique is through

the use of ownership hierarchy. A developer changes the annotations to push secondary objects
under primary objects, and sometimes changes the code to support strict encapsulation. On the
other hand, an unprincipled approach would allow a developer to elide any object or domain in
the extracted architecture. In future work, we will consider ways to make a runtime architecture
reflect more directly the types that are of interest to a developer, while maintaining soundness.

4.8.6 Validity

We identify the following confounding factors with the field study.

Experimenter bias. The experimenter understood ownership domain annotations and de-
signed several of the tools that he used himself during the field study. Moreover, he had access to
the code for the tools and customized them to the task to minimize data entry by loading settings
from a file. However, a typechecker kept him honest, i.e., he could not just insert any annotation
or manipulate the extracted object graphs. In a few instances, the experimenter backtracked on
certain annotations he had just inserted.

Code unfamiliarity. The experimenter was completely unfamiliar with the code. A developer
who is familiar with the code could perhaps add better annotations faster.
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Developer motivation. The field study occurred in a workweek during which the developers
were busy meeting a product ship deadline. As a result, they were less motivated to help the
experimenter. Moreover, the developer seemed skeptical about the method and the tool.

Domain familiarity.  LbGrid was somewhat similar to the JHotDraw subject system the experi-
menter studied previously, in that they are both GUI-based applications that used the Java Swing
and AWT libraries. The experimenter also had some experience with the application domain,
having previously developed a reusable grid control.

4.8.7 LbGrid Summary

The field study helped us confirm the following. First, we confirmed that an outside developer
understood abstraction by ownership hierarchy and by types. Second, using only static analysis
was compelling during architectural extraction, even without considering issues of soundness
and the need to reflect all possible program runs. For a variety of reasons, it would have been
difficult to setup and run the LbGrid system in order to use an architectural extraction method
based on dynamic analysis. In addition, using a dynamic analysis would have required the ex-
perimenter to learn how to use the LbGrid system in order to get a good coverage. This would
have been difficult because it would have required populating a database with appropriate test
data, and learning how to navigate a fairly complex user interface with many user-selectable op-
tions. Finally, based on my own previous experience with ArchJava (Abi-Antoun and Coelho
2005; Abi-Antoun et dl. 2007a), | could not have re-engineered LbGrid to ArchJava in the same
few days that it took me to add the annotations, even after accounting for possible tool and lan-
guage familiarity. Thus, adding annotations to an existing system seems more lightweight than
re-engineering the system to use an extended language like ArchJava.

The goal of the field study was to better understand the process of adding the annotations. In
addition, it would have been nice to demonstrate the value of the extracted architecture by show-
ing how it can help identify undocumented information or contradict documented information,
or help a developer in a typical code modification task. Due to the time constraints on the field
study, we never got to concretely demonstrating the value of the extracted architecture.

4.9 Evaluation based on Cognitive Framework for Design

4.9. Evaluation based on Cognitive Framework for Design 173



IZA"

uonoe.x3 ydeis) 19algo ay Jo uonenjens ‘y Jaideyd

Table 4.1: Evaluation of the ArchRecJ tool based on the Cognitive Framework for Dé;iign_(_S_tQLéLLel_hl. 1999).

Cognitive Design Element

Corresponding feature in the tool

Enhance bottom-up comprehension
E1l: Indicate syntactic and semantic relationships

Indicate logical containment or strict encapsulation;
view field declarations that@Object merges

E2: Reduce effects of delocalized plans

Handle inherited fields and domains;
Show objects in actual domains bound to formal domain parameters

E3: Provide abstraction mechanism

Developer-specified annotations organize objects into groups (with merging)
Hide all the private domains or the internals of a selected object

Enhance top-down comprehension
E4: Support hypothesis driven comprehension

Start at selected root object and drill down; optionally visualize formals

E5: Provide overviews at various levels of abstract

ohimit depth of ownership tree and elide the “internals” of a sele@€xbject

Integrate bottom-up and top-down approaches
E6: Provide views of multiple mental models

Show an approximation of the runtime structure at compile time

E7: Cross-reference multiple mental models

Label aDObject with a list of types; optionally show variable names

Facilitate navigation
E8: Provide directional navigation

Navigate up and down ownership tree

E9: Provide arbitrary navigation

Search for a type, domain or field by name

Provide orientation cues
E10: Indicate the current focus

E11: Display path that led to current focus

Show a nested graph starting from the root object

E12: Indicate options for further exploration

Reduce disorientation effects
E13: Reduce effort for user-interface adjustment

Main window shows the unfolding of tHeGraph

E14: Provide effective presentation styles

TheDGraph is laid out automatically; the tool supports filtering options

Show currently selected element in ownership tree to the left of the visualization

Show all domains, objects in domain; clicking on object selects it in ownership tree



Table[4.1 presents an evaluation of the tool against a sadtwiavalization taxonomy used
for software exploration tools, the Cognitive Framework for Design (Storey et al. 1999), with the
usual disclaimers against self-evaluation.

Future work includes conducting additional evaluations (Nielsen and/Mack 1994) in areas
where visualizing the runtime architecture is crucial for program understanding, such as when
tuning performance (Walker etlal. 1998), or distributing an applich 2002).

4.10 Discussion

We now discussion our evaluation of the annotations and the static analysis.

4.10.1 Research Questions (Revisited)

In this section, | discuss how well the evaluation answered the research questions (Section 4.2).

RQ1 — Precision: In practice, the static analysis does produce object graphs that have sufficient
precision. The combination of precise generic types and domain annotations seems ade-
quate in most cases.

RQ2 — Abstraction by ownership: In practice, a hierarchical object graph provides architec-
tural abstraction by showing an order of magnitude fewer objects in the top-level domains,
compared to a flat object graph.

RQ3 — Abstraction by types: In practice, abstraction by types achieve additional architectural
abstraction in an object graph, even in the presence of a rich inheritance hierarchy, such as
the one in JHotDraw.

RQ4 — Iteration: In practice, | was able to iterate effectively the process of adding the owner-
ship annotations and extracting object graphs that have the desired architectural abstrac-
tion.

RQ5 — Annotations: In practice, | was able to add annotations that describe local, modular in-
formation. The process is iterative and self-correcting. | never encountered a situation
where | was unsure of the annotation to add, needed the visualization to add the annota-
tions, but the visualization itself needed the annotations. | could always add an annotation
that typechecked, then go back and refine it as needed.

Moreover, the annotations that | added, eMgDEL, VIEW, CONTROLLER, were mostly nat-

ural and consistent with engineering intuition. In particular, | did not define fake domains
such a®10DEL1 andMODEL2 to compensate for the absence of an alias analysis or for the
other sources of imprecision in the analysis (Sedtion 2.6.3,[Page 69).

RQ6 — Value: In practice, | indicated several instances of how an extracted OOG highlights
potentially useful information about a system’s runtime structure.

4.10.2 Evaluation Critique

Our evaluation of the object graph extraction suffers from a few weaknesses.

4.10. Discussion 175



Subject system selection. One criticism is that we initially evaluated the approach on the same
subject systems we used to develop the approach. For instance, the JHotDraw and the Hill-
Climber case studies were formative. However, the LbGrid and Aphyds case studies were more
summative.

Lack of comparison. Since there is other prior work in architectural recovery, a comparative
validation would be useful. ldeally, one should apply several architectural recovery approaches
to the same subject system (say, JHotDraw) and compare which one is less onerous, more direct,
and qualitatively evaluate the output of the various tools. However, the only tool that claims
to extract runtime architecture statically, XaR (Mendonca and Kramer 2001), supports only
procedural code.

Missing target architecture. None of the subject systems we annotated came with an authori-
tative target architecture to guide the annotation process. Indeed, defining a reference or a target
architecture is a research topic in its own right. In the case of LbGrid, | had access only to a rough
guide based on a code architecture, so | was effectively defining the target runtime architecture
during the process of adding the annotations.

Missing generic types. The code bases for JHotDraw and HillClimber did not already use
generic types. In some cases, refactoring to generics was non-trivial, and uncovered some poten-
tial defects, e.g., when the samector object was used to store objects of different types, such
asString andInteger objects.

Missing effort data. | conducted the formative JHotDraw and HillClimber case studies in dif-
ferent phases. In particular, | stopped the case studies in the early stages to fix several important
bugs in the tool chain. So, | do not have accurate measures of the time spent adding annotations
to those systems. However, during the field study, we did carefully measure the time needed to
apply the approach, as we discussed above.

4.10.3 Soundness

All the subject systems we annotated still have several annotation warnings, which weakens
the claims that the extracted object graphs are sound. Addressing these remaining annotation
warnings could involve one of the following:

* Increase type system expressivenesBhere are several known expressiveness challenges
in the underlying type system. So one way to address those warnings is to extend the type
system (See Sectign 9.2.2, Pagel308);

* Refactor the code. In some cases, refactoring the code could allow for it to be anno-
tated successfully, using the current type system. Of course, this is not an ideal solution.
However, some of the code that cannot be annotated is also not following recommended
practices of object-oriented design and programming. One class of warnings is due to the
use of static fields, which are typically challenging for most ownership type systems.
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Table 4.2: Performance measurements of the architectural extradtiog. shows the lines of cod®O0G
measures the extraction time in minutes and seconds on an Intel Pentium 4 (3 GHz) with 2 GB of memory.
WARN is the remaining annotation warningsBST indicates which abstraction by types was used.

System LOC | OOG ABST WARN
JHotDraw | 15,000| 2:18 | Trivial types / Design intent types 60
HillClimber | 15,000 0:26 Trivial types 42

* Inspect the code and suppress innocuous warningin annotation warning contributes
to unsoundness in an extracted object graph only if eliminating the warning would result in
new objects or edges in the object graph. One could manually inspect the problematic lines
of code, and manually suppress the annotation if one can determine that such a warning
does not make the object graph unsound. Still, one advantage of the approach in that case
is that the developer does not have to inspect the entire code base.

4.10.4 Performance

Tablel4.2 measures the execution time of the static analysis on several subject systems. The OOG
time includes parsing the program’s abstract syntax tree to retrieve the annotations and extracting
the object graph. Overall, the OOG tool is sufficiently interactive to allow iteration.

4.10.5 Scalability

Since the biggest system we analyzed was only 30 KLOC (LbGrid), we cannot claim that we
demonstrated &HOLIA’s scalability. However, when compared to many published architectural
extraction case studies, even 30-KLOC does not fare too poorly.

4.11 Summary

| evaluated the object graph extraction analysis using several real medium-sized programs that |
annotated manually. From an annotated program, | showed that | can use a tool to extract stati-
cally a hierarchical object graph that conveys meaningful abstractions. Indeed, these hierarchical
object graphs seem to scale much more effectively than the corresponding flat object graphs that
previous static analyses extract. In addition, an extracted object graph can give various insights
by identifying undocumented information or contradicting manual documentation.

There are two questions, however, that the evaluation presented in this chapter does not an-
swer. The first question is whether an extracted object graph corresponds truly to a standard
runtime architecture. In Chapter 6, | discuss a separate analysis that raises the level of abstrac-
tion of an object graph, and abstracts it into a C&C view.

The second, perhaps more important question is when to stop iterating the process of refining
the annotations and extracting OOGs. One strategy is to fine-tune the annotations in the code and
the abstraction by types to make an extracted object graph similar to a posited architecture, to
enable analyzing the conformance of the implementation to a designed architecture. In[Chapter 6,
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I make this evaluation criterion more precise by abstracmegxtracted object graph into a built
architecture, then analyzing the conformance of a built architecture to a designed one.

Analyzing conformance requires identifying and reconciling the key differences between
the built and the target architectures, so the next chapter (Chapter 5) addresses the problem of
synchronizing between two architectural views.
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Chapter 5

Architectural Synchronization@

5.1 Introduction

Software architects often face the problem of reconciling different versions of architectural mod-
els including differencing and sometimes merging architectural views—i.e., using the difference
information from two versions to produce a new version that includes changes from both ear-
lier versions. For instance, during analysis, a software architect may want to reconcile two
Component-and-Connector (C&C) views representing two variants in a product line architecture
th_en_el_a"LZD_dB). A runtime analysis could use the difference information to perform archi-

tectural repair (Dashofy et lal. 2002). During evolution, the difference information between two

versions can help focus regression testing effbr_ts_(MuQLJanbl_aLJ 2005).

Once the system is implemented, an architect may want to compare a designed C&C view
against a C&C view retrieved from the implementation using various architectural extraction
techniques. This is the approach that-®LIA takes to analyze communication integrity in the
target architecture, following thextract-abstract-checktrategy.

Several techniques have been proposed for differencing and merging architectural or design
views. Most, however, do not detect differences based on structural information. Many assume
that elements have unique identifiers (Alanen and Forres 2003; Ohst et &l 2003; Mehra et al.
2005). Others match two elements if both their labels and their types match (Chén et al. 2003),
which is often infeasible when dealing with views at different levels of abstraction. Many tech-
niques detect only a small number of differences. For instance, ArchDiff only detects insertions
and deletionsl (van der Westhuizen and van der Hoek| 2002; Chen et al. 2003), possibly leading
to the loss of information when elements are renamed or moved across the hierarchy. Tracking
changes, using element-level versioning, helps infer high-level operations, such as merges, splits
or clones, in addition to the low-level operations, such as inserts and d @gez 2005;
Roshandel et al. ZQb4). But such an approach requires building new tools or changing existing
tools to monitor the edits, and cannot handle legacy architectural models.

We propose an approach that overcomes some of these limitations, by differencing and merg-
ing architectural views based on structural information. In our approach, we leverage the hier-
archy in the architectural views, and use a tree-to-tree correction algorithm to identify matches,

Portions of this chapter appeared|in (Abi-Antoun et al. 2006; Abi-Antoun et all 2008)
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and classify the changes between the two views. The algorien the optional type informa-
tion, whenever available, to avoid matching view elements that are incompatible, thus speeding
execution and improving the match quality.

At the core of the approach is a polynomial-time tree-to-tree correction algorithm, MDIR,

9) that extends another optimal tree-to-tree correction algorithm for unordered la-
beled trees that detects renames, inserts and deletes (Torsello et al. 2005), and generalizes it to
additionally detect restricted moves. The algorithm also supports forcing and preventing matches
between elements in the views under comparison.

| developed a set of tools for the semi-automated synchronization of C&C views that uses
the MDIR algorithm. The first tool, ArchJ2Acme, can synchronize a designed C&C view with
a built C&C view retrieved from an ArchJava implementation. Another tool, ArchSynchro, can
more generally synchronize two C&C views in Acme, regardless of how they were obtained. |
evaluated the tools to find and reconcile interesting differences in real architectural views.

The chapter is organized as follows. Secfion 5.2 describes the challenges in differencing and
merging architectural views, the underlying assumptions, and the limitations of our approach.
Sectior 5.8 summarizes our novel tree-to-tree correction algorithm (Abi-Antour et al. 2008). In
Sectioi 5.4, we use the algorithm to synchronize architectural C&C views. Seciion 5.5 illustrates
the approach using extended examples on real architectural views.

5.2 Architectural View Differencing

A software architecture can generally be described as a graph, so differencing and merging archi-
tectural views is a problem in graph matching. Graph matching measures the similarity between
two graphs using the notion of graph edit distance, i.e., it produces a set of edit operations that
model inconsistencies by transforming one graph into andther (Conte et al. 2004). Typical graph
edit operations include the deletion, insertion and substitution of nodes and edges. Each edit
operation is assigned a cost. The costs are application-dependent, and model the likelihood of
the corresponding inconsistencies. Typically, the more likely a certain inconsistency is, the lower
is its cost. Then the edit distance of two graghs&ndg, is found by searching for the sequence
of edit operations with the minimum cost that transfayinto g». A similar problem formula-
tion can be used for trees. However, tree edit distance differs from graph edit distance, in that
operations are carried out only on nodes and never directly on edges.
Graph matching is NP-complete in the general chs_e_(Q_o_nIéLel_aﬂ. 2004). Unique node la-
bels enable processing graphs efficieritly (Dickinson et al. 2004), which explains why many ap-
roaches make this assumption, e.g.. (Alanen and Porres 2003; Ohst et al. 2003; Mehra et al.
QOL_OE. Optimal graph matching algorithms, i.e., those that can find a global minimum of the
matching cost if it exists, can handle at most a few dozen nodes (Me 1.1996; Conte et al.
). Non-optimal heuristic-based algorithms are more scalable, but often make restrictive
assumptions. For instance, the Similarity Flooding Algorithm (SFA) “works for directed la-
beled graphs only. It degrades when labeling is uniform or undirected, or when nodes are less
distinguishable. [It] does not perform well [...] on undirected graphs having no edge labels”
(Melnik et al 2002).

Several efficient algorithms have been proposed for trees, a strict hierarchical structure, so our
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approach focuses on hierarchical architectural views. Wiatell architectural views are hierar-
chical, many use hierarchy to attain both high-level understanding and detail. In a C&C view, the
tree-like hierarchy corresponds to the system decomposition, but cross-links between the system

elements form a general graph. Many approaches are hierarchical (Apiwauanapdllg_ej al. 2004;
Bﬂgh&&ﬂﬁﬁdbh;&ﬂgﬁﬂdﬁl&ﬂt%%). So our choice is hardly new. However, we relax

the constraints of existing approaches as follows:

No unique identifiers. Most techniques do not detect differences based on structural informa-
tion. Many assume that elements have unique identifiers (Alanen and Porres 2003; Ohst et al.
2003; Mehra et é@bS). Others match two elements if both their labels and their types match
(Chen et alll 2003), which is often infeasible when dealing with views at different levels of ab-
straction. Making the assumption of having unique identifiers enables the use of exact and scal-
able algorithms that can handle thousands of nades (Dickinsof et all. 2004).

Unfortunately, architectural view elements often do not have unique identifiers. This is par-
ticularly the case for a built architecture extracted from an implementation using a tool. For
maximum generality, SHOLIA does not require elements to have unique identifiers.

No ordering. In the general case, an architectural view has no inherent ordering between its
elements. This suggests that an unordered tree-to-tree correction algorithm might perform better
than one for ordered trees. Many efficient algorithms are available for ordered labeled trees, e.g.,
(Shasha and Zhdrtgﬂgn. In comparison, tree-to-tree correction for unordered trees is MAX
SNP-hard|(zhang and Jiang 1994). Some algorithms for unordered trees achieve polynomial-
time complexity, either through heuristic methods, elg., (Chawathe and Garcia-Molina 1997;
Mﬁ%gﬁldﬁﬂdi&gh&@ﬂﬁiﬂjooq or under additional assumptions, e.g., (Torséllo et al.
).

Insertions and deletions only. Many architectural comparison techniques detect only a small
number of differences. For instance, ArchDiff (van der Westhuizen and van deriHoek 2002;
Chen et a|||_20_®3) detects only insertions and deletions, possibly losing information when ele-
ments are renamed or moved across the hierarchy.

Name differences between two C&C views can arise for a variety of reasons. For instance,
the architect may update a name in one view, and forget to update another view. Names are
often modified during software development and maintenance. A name may turn out to be in-
appropriate or misleading due to either careless initial choice, or name conflicts from separately
developed moduIeL‘_(Nn_mamand_QamHmllQ%). Furthermore, developers tend to avoid using
names that may be in use by an implementation framework or library, a minor detail for the ar-
chitect. Finally, architectural view elements may not have persistent names or their names may
be generated automatically by tools.

This suggests that an algorithm should be able to match renamed elements. Identifying an
element as being deleted then inserted when, in fact, it was renamed, would result in losing prop-
erty information about the element, even if this produces structurally equivalent views. These
architectural properties, such as throughput, latency, etc., are crucial for many architectural anal-

yses, e.g.] (Spitznagel and Garlan 1[998).
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In the following discussion, anatchednode is a node with either axactly matchindabel
or arenamedabel.

Hierarchical moves. Architects often use hierarchy to manage complexity. In general, two
architects may differ in their use of hierarchy: a component expressed at the top level in one view
could be nested within another component in some other view. This suggests that an algorithm
should detect sequences iofernal node deletiongn the middle of the tree, which result in
nodes moving up a number of levels in the hierarchy. An algorithm should also detect sequences
of internal node insertiongn the middle of the tree, which result in nodes moving down the
hierarchy, by becoming children of the inserted nodes (Eig. 5.1).

Manual overrides. Structural similarities may lead a fully automated algorithm to incorrectly
match top-level elements between two trees and produce an unusable output. Because of the
dependencies in the mapping, one cannot easily adjust incorrect matches after the fact. Instead,
we added a feature not typically found in tree-to-tree correction algorithms. The feature allows
the user to force or prevent matches between selected view elements. The algorithm then takes
these constraints into account to improve the overall match. The user can specify any set of
constraints, as long as they preserve the ancestry relation between the forcibly matched nodes.
In particular, ifa is an ancestor of, a is forcibly matched ta:, andb is forcibly matched tal,

thenc must be an ancestor df

Optional type information.  Architectural views may be untyped or have different or incom-
patible type systems. This is often the case when comparing views at different levels of abstrac-
tion, such as a designed conceptual-level view with a built implementation-level view. Therefore,
an algorithm should not rely on matching type information, and should be able to recover a cor-
rect mapping from structure alone if necessary, or from structure and type information if type
information is available. An algorithm could however take advantage of type information, when
available, to prune the search space by not attempting to match elements of incompatible types.
If the view elements are represented as typed nodes, at the very least, an algorithm should
not match nodes of incompatible types, e.g., it should not match a conngcotarcomponeny.
If architectural style information is available, additional architectural types may be available and
could be used for similar purposes. For instance, an algorithm can avoid matching a component
of typeFilter, from a Pipe-and-Filter architectural style, to a component of Rgpesitory,

from a Shared-Data architectural style (Shaw and Garlan 1996).

No monitoring changes. Tracking changes, using element-level versioning, helps infer high-
level operations, such as merges, spllts or clones, in addition to the low-level operations, such
as inserts and delet rﬁﬂ I|_e1_a] 2004). But such an approach requires
building new tools or changing existing tools to monitor the edits, and cannot handle legacy
architectural models. For maximum generalitg HOLIA assumes a disconnected and stateless
operation.
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Figure 5.1: Tree edit operations.
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Comparable views. The two views under comparison have to be somewhat structurally sim-
ilar. When comparing two completely different views, an algorithm could trivially delete all
elements of one view, and then insert them in the other view. In addition, the two views must
be of the same viewtype, and must be comparable without any view transformation. Checking
the consistency of different but related views, such as a UML class diagram and a UML se-
guence diagram, is a problemvrew integrationdmx and is outside the scope of this
dissertation.

No merging/splitting. Our approach does not currently detect the merging or splitting of view
elements. Merging and splitting are common practice, but are difficult to formalize, since they
affect connections in a context-dependent Mmﬂmué 1998). We leave merges and splits to
future work.

5.3 Tree-to-Tree Correction

M% developed an algorithm for the comparison of unordered labeled trees, MDIR
(Moves-Deletes-Inserts-Renames), which generalizes a recent optimal tree-to-tree correction
algorithm kIQLs_QlIQ_eI_éIL_ZQ%), which we will refer to as THP. Here, we give an overview
of the MDIR algorithm and leave the details, including its pseudo-code definition, elsewhere

(Abi-Antoun et al| 2008; Nahas 2(109).

5.3.1 Overview of Algorithm

We illustrate the MDIR algorithm on a small example of comparing two tigemnd7;. MDIR
exhaustively computes from bottom to top the cost of mapping each ndfietcevery other
node inT;. The computed costs are stored in a cost matrix. Following the dynamic programming
paradigm, MDIR uses the comparison on the high depth nodes to compare the low depth nodes.
The example also illustrates the usefulness ofstiecessor setpproach, since bipartite match-
ing cannot match subtree nodes, because of the need to preserve the hierarchical constraints.
MDIR starts by computing the cost of matchifgto d (Fig.[5.2). Similarly, MDIR computes
the costs of matchingD, e), (D, f), (D, g), ..., (E,d), (E.e), (E,g). Next, MDIR computes
the cost of matching3 to d (Fig.[5.3). Then, MDIR computes the cost of matchiBgo b
(Fig.[5.4). This requires knowing the cost of the optimatcessor set mappirigr B andb. At
this point, MDIR has computed the costs of matching every descendéhtamfny node in the
second tree, because of the post-ordering of the trees.
The optimal successor set mapping corresponding to the patn is computed as follows
(Fig.[5.8). First, take all the node pairs, where the first item is a descendBntoid the second
item is a descendent éf i.e., the se{ (D, d), (D, e), (F,d), (E,e)}. The optimal mapping will
clearly be a subset of this set. To obtain that optimal mapping, we examine all mappings—
except the ones that have been pruned because the bounds on their cost showed they could not
be optimal. The other constraint is: (if, y) is a pair in a mapping, neithet, nory, nor any of
their ascendents or descendents, can appear in any other pair in the same mapping. Thus, the
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Figure 5.2: CosT(D,d) = cost of editing label oD to d, i.e., the measure of similarity between the labels,
in this case.
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Figure 5.3: CosT(B,d) = CosT(deletingB’s children) + GsT(editing B’s label). Assuming the cost of
a deletion is 5 times a unit cost,d8T(B, d) = CosT(deletingD) + CosT(deletingFE) + CosT(editing

B'slabel) =5+5 + 2.
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Figure 5.4: CosT(B,b) = CosT(successor set mapping 0B, b)) + CosT(editing the label ofB to b).
CosT(D,d) and GsT(F,e) have been previously computed, thuss3( B, b) = CosT(D,d) + COST(F,e)
+0.

optimal successor set mapping {d8,b) is {(D, d), (E,e)}. Finally, MDIR computes the cost
of matchingB to a (Fig.[5.8).

At the end of this phase, MDIR has determined the “best” successor set mapping, and stored
it for the next phase, when MDIR will retrieve the best matches. MDIR could avoid keeping
the optimal successor set mapping for each node pair in the first phase, to reduce the space
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Figure 5.5: Computing the cost of matching to b requires thesuccessor set mappimg the pair(B, b).
Thesuccessor set mappimg (B, b) is the sef{ (D, d), (E,e)}.
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Figure 5.6: CosT(B,a) = CosT(successor set mapping of (&) + CosT(editing the label ofB to a) +
CosT(deletingb, f andg).

complexity toO(N?). But it is simpler conceptually to store this information, and this is how we
currently implemented MDIR.

In the second phase, MDIR uses a recursive procedure to compute the match list, i.e., to
determine what node corresponds to what other node. MDIR uses the following recursive for-
mulation. The list of matches for subtree pair rootettat/) consists of z, y), in addition to the
list of matches of each pair in the successor set mappiiig, of .

MDIR starts with (A,a) (Fig. [5.7). The successor set mapping Ofi,a) is
{(B,b),(F, f),(G,g)}. So, MDIR first addg A, a) to the match list, and then adds the pairs
(B,b), (F, f), and(G, g) to the work list. Then, MDIR popé&B, b) from the work list, adds it to
the match list, and adds to the work list the successdiset), namely,(D, d) and(E, e). Next,

MDIR pops(F, f) from the work list, adds it to the match list, and proceeds similarly.

5.3.2 Forcing and Preventing Matches

Manual overrides are not a standard operation in most tree-to-tree correction algorithms. MDIR
has the ability to force and prevent matches between a node iffitreed another node in tree
TQ.

Preventing a match between two nodendj can be done by assigning a very large cost
to the corresponding entry in the cost matfik|[j]. But forcing a match between two nodes is
more difficult, due to the necessity of avoiding the deletion of the forcibly matched nodes and at
the same time allowing the deletion of some of their ancestors. An explanation of the solution is

in (Abi-Antoun et al| 2008; Nahas 2009).
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Step Work List Match List

1 (A,a)

2 (B.b)(F.1)(G.9) (A,a)

3 (F.H(G.9)(D.d)E.e) (Aa)B.b)

4 (G,0)(D,d)(E.e) (A,a)(B,b)(F.f)

5 (D,d)(E.e) (A,a)(B,b)(F.f)(G,9)

Figure 5.7: Computing the match list.

5.3.3 Runtime and Memory Complexity

In practic@, the observed runtime for MDIR i©(K N?), whereK is a large constant. In com-
parison, THP has a worst case running timeJgfl* N?), whered is the maximum degree of a
tree andl << N (Torsello et al. 2005). Regarding memory requirements, both THP and MDIR
could be implemented i@ (N?) space, at the expense of additional complexity. Our current THP
implementation require®(dN?) space, and MDIR requireS(bN?) space, wheré is a large
constant factor.

5.4 Architectural View Synchronization

In this section, we discuss how we use a tree-to-tree correction algorithm to synchronize hierar-
chical graphs corresponding to C&C runtime architectures.

5.4.1 General Approach

We represent the structural information in a C&C view as a cross-linked tree structure that mir-
rors the hierarchical decomposition of a system. The tree also includes some redundant infor-
mation to improve the accuracy of the structural comparison. For instance, the subtree of a node
corresponding to a port includes additional nodes for all the port’s involvements, i.e., all the com-
ponents and their ports reachable from that port. Each node is decorated with properties, such as
type information. The type information, if provided, populates a matrix of incompatible nodes
that may not be matched. That matrix also includes optional user-specified constraints to force
or prevent matches.

A graph representing a C&C view can generally have cycles in it. Representing an archi-
tectural graph as a tree causes each shared node in the graph to appear in several subtrees. We
consider one of these nodes tikefining occurrence, and addceoss-linkfrom each repeated
node back to its defining occurrence. These redundant nodes, while they significantly increase

2A more formal analysis of the algorithm’s complexity islin (Abi-Antoun et al. 2008; Nahas 2009).
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Figure 5.8: Graphical overlays to indicate differences: [fig. 58(a) indicatesh; Fig[ 5.8(1) indicates
arename; Fig[ 5.8(¢) indicates amsertion; and Fig. 5.8(¢l) indicatesdeletion.

the tree sizes, greatly improve the tree-to-tree correction accuracy. However, they may be incon-
sistently matched with respect to their defining occurrences, either in what they refer to, or in the
associated edit operations.

We work around these inconsistent matches using two passes. During the first pass, we
synchronize the strictly hierarchical information corresponding to the system decomposition,
i.e., components, ports and representations. During the second pass, we synchronize the edges in
the architectural graph. The post-processing step is simple at that point, since it has the mapping
between the nodes in the two graphs.

Synchronization is a five-step process: (1) setup the synchronization; (2) optionally view and
match types; (3) view and match instances; (4) optionally view and modify the edit script; (5)
confirm and optionally apply the edit script. The final step is optional because the architect may
decline the edit operations for various reasons, or may be interested only in a change impact
analysis[ﬂ&r_ikha.a.r_el_ﬂl._l&m). Because Steps 1 and 5 are straightforward, we will only discuss
Steps 2-4.

In Step 2, manually matching the type structures between the two views produces semantic
information that speeds up the comparison. This optional information can also reduce the amount
of data entry for assigning types to the elements that the edit script will create.

In Step 3, matching instances proceeds as follows: (a) build tree-structured data from the
two C&C views to be compared; (b) use tree-to-tree correction to identify matches and structural
differences; and (c) obtain an edit script to merge the two views.

The tool shows the structural differences by overlaying icons on the affected elements in
each tree (Fig.[518). If an element is renamed, the tool automatically selects and highlights
the matching element in the other tree. For inserted or deleted elements, the tool automatically
selects the insertion point, by navigating up the tree until it reaches a matched ancestor. The tool
shows in bold a node if it detects differences in its subtree. The tool shows in italics ports that
are inherited from the component type.

Various features can restrict the size of the trees and help reduce the comparison time:

 Start at Component: the user can select any component to be the tree root, and can reduce

the tree sizes by selecting subtrees;

* Restrict Tree Depth: the user can exclude from comparison any nodes beyond a certain

tree depth;

* Elide Elements: the user can exclude selected nodes and their entire subtrees from com-

parison. Elision is temporary and does not generate any edit actions.

The tool gives the user manual control using the following features:

* Forced matches:the user can manually force a match between two elements that may not

match structurally;

* Manual overrides: the user can override any edit action suggested by the structural com-
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parison.

Step 4 produces from the edit script a common supertree, that previews the merged view
after the edit actions are applied. In this step, the user can assign types to elements to be created,
change the types of existing elements, or override types that were automatically inferred based
on the type matching in Step 2. The tool also checks the edit script for errors, such as illegal
element names. The user can also rename any architectural element that the edit script will
create. Finally, the user can cancel any unwanted edit actions.

5.4.2 Specialized Tools

This approach supports building tools for differencing and merging architectural views in a wide
range of architecture description languages (ADLs). However, to evaluate our approach, we
represent the C&C views in the Acme general purpose AD_L_(Q_aLIadLeLaIJ 2000j|/Acmie 2009).
We developed a tool to extract a built C&C architecture from an ArchJava implementa-
tion ¢AldLi_Qh_el_a.I|.|_29_Q2a). Similarly, one could extract built views from an implementation-
constraining ADL with code generation capabilities, or an implementation-independent ADL

with an implementation framework, such as C2 (Medvidovic and !I:hylgr 2000).

We intended our synchronization tools to be lightweight enough that they can
fit into a single dialog in an integrated development environment, such as Eclipse
@tmmmmmﬂdﬁ)os), rather than require a specialized environment for
architectural extraction (Telea et al. 2002). Both AcmeStudio, a domain-neutral architecture
modeling environment for Acme (Schmerl and Garlan 2004; AcmeStudio 2009), and ArchJava’s
development environment, are Eclipse plugins, which reduced the tool integration effort.

We developed one tool, ArchJ2Acme, to make a designed architecture expressed in Acme,
incrementally consistent with a built architecture extracted from an ArchJava implementation. In
future work, the ArchJava infrastructure must change to support making incremental changes to
an existing ArchJava implementation based on changes to the designed architecture.

We developed another tool, ArchSynchro, based on the same approach, to more generally
synchronize any two C&C views represented in Acme. One view could correspond to a doc-
umented architecture. The second view could correspond to a C&C view recovered using any
architectural extraction technique, e.@u_(S_th_eLLHI_aLJZO%). Alternatively, the second view
could be another C&C view retrieved from a configuration management system, or one that
corresponds to a variant in a product line.

Synchronizing a designed C&C view with a built C&C view must often address expressive-
ness gaps between architectural information at different levels of abstraction. Although we use
Acme and ArchJava to illustrate some of these differences that must be bridged, synchronizing
any pair of designed and built C&C views may encounter similar challenges.

Structural Differences. There will always be name differences of the same structural informa-
tion between Acme and ArchJava. For instance, an ArchJava port can be hanseckserved
keyword in Acme. Even if code generation automatically produces a skeleton implementation
from the architectural model, connector names and role names are lost, since ArchJava does not
even name those elements. Finally, in Acme, port names are critical for typechecking. But in
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ArchJava, port names are unimportant and obey the standagdaponming language notions of
binding and scope.

Hierarchy. Acme treats hierarchy as design-time composition, where a component at one level
in the hierarchy is just a transparent view of a more detailed decomposition specified by the
representation of that component. Multiple representations for a given component or connector
could correspond to alternative ways of decomposing an element. On the other hand, ArchJava
views hierarchy in terms of integration of existing components, along with glue code, into a
higher-level component. Due to the glue, a higher-level component is semantically more than the
sum of its parts. These differing views of hierarchy create additional challenges for architectural
synchronization. For example, if multiple representations are present at the design level, there
must be a way to specify which of these representations was actually implemented.

Matching Instances. Obtaining the tree-structured data from Acme simply converts the Acme
architectural graph into the cross-linked tree structure discussed earlier. Acme does not have
first-class constructs for required and provided methods. In keeping with Acme’s model for
extensible properties, the tool adds properties on a port to represent its provided and required
methods, as well as other salient properties, e.g., the port’s visibility.

To obtain the tree-structured data from an ArchJava implementation, the ArchJ2Acme tool
traverses the compilation units, ignores classes that are not component types, and fields that are
not of component type. Different modeling choices are possible in this case. First, ArchJava
does not name connectors or connector roles. The ArchJ2Acme tool generates synthetic names
from the components and ports that a connector connects to. Second, the ArchJava top-level
component can have ports, whereas the top-level component in Acme, i.e., the Acme system,
cannot. One option is to create a top-level component in Acme to correspond to ArchJava’s
top-level component. Another is to create a synthetic component to hold these ports. Third,
ArchJava ports can be private, whereas all Acme ports are public. One option is to represent
ArchJava private ports as Acme ports on an internal component instance; another is to simply
ignore private ports.

Matching Types. Assigning architectural styles and types to an Acme view enforces the ar-
chitectural intent using constrainm 001). For instance, a constraint on a component
type may specify that all instances of that type must have exactly two ports. Similarly, setting
architectural styles on the overall system—and on each sub-system representation if applicable,
enforces any constraints associated with the style. In Acme, the Pipe-and-Filter style prohibits
cycles, a constraint that a general purpose implementation language, such as ArchJava, does not
directly enforce.

In many design languages, types are arbitrary logical predicates. An element is an instance
of any type whose properties and rules it satisfies. And one type is a subtype of another, if the
predicate of the first type implies the predicate of the second type. Such a type system is highly
desirable at design time, because it allows designers to combine type specifications in flexible
ways. Acme embodies this approach, but is hardly unique; for instance, Mby et al.

) takes a similar approach. As an example of using a predicate-based type system, consider
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an architecture that is a hybrid of the Pipe-and-Filter arar&ihData architectural styles. In this
example, &ilter component type has at least airgut and oneoutput port, while aClient
component in the Shared-Data style has at least one port to communicate with the repository.
A component in this architecture might inherit both th ter and theClient specifications,
yielding a component that has at least three ports—two for communicating with other filters and
one for communicating with thRepository.

However, implementation-level type systems, such as the ones provided by C2SADL
(lM_e_dMidmLig_e_t_al_l&QG) or ArchJava, cannot express the example above. A specification that a
component has a port implies a requirement that the environment will match that port up with
some other component. Therefore, conventional type systems require a component type to list all
of the ports it might possibly have—or at least all those ports that are expected to be connected at
runtime. There is no way to express thatid ter component has “at least two ports"—instead,
one must say that theilter has “at most” or “exactly” two ports. Therefore, in the imple-
mentation, one cannot combine thelter type with aRepository component type—which
defines a third port that is prohibited by the filter specification.

So a design-level predicate-based type system is fundamentally incompatible with a type
system for a programming language. As a result, the matching algorithm may not rely on exactly
matching typing information as in UMLDiff_(Xlng_and_S_tLQd 05). In our approach, the user
specifies arbitrary matches between the type hierarchies from Acme and ArchJava, flattened and
shown side-by-side.

Consider synchronizing the Acme model of a simple system following the Pipe-and-Filter
style with its ArchJava implementation. In Fig. 5.9, the user matches the types as follows. The
user selects theapitalize, CharBuffer, Lower, Merge, Split, Upper component types in
ArchJava and matches them withlter Acme type. All the component instances of these
ArchJava types will be assigned thelter Acme type during synchronization. Using a limited
form of wildcards, the user assigns the Acme tpee to the ArchJava connector typdY. So
any Acme connector created for an implicit ArchJava connector instance will have that type.

Since ArchJava ports are not typed, the user can individually assign to an ArchJava port a
set of Acme port types. To reduce the manual work, the user uses another form of wildcards.
He can assign an Acme type, e.gutputT, to any ArchJava port that only provides methods.
Similarly, he can assign themputT Acme type to any ArchJava port that only requires methods.

In addition, AcmeStudio defines connection patterns for most architectural styles. Based on these
patterns, ArchJ2Acme can infer the Acme role types, once the user assigns types to components,
ports and connectors. For instance, the tool infers the roledypeceT, based on the source
component typ&ilter, source port typenputT, and connector typRipe.

In this case, the synchronization produces the edit script if Eigl 5.10. Since the user mapped
the types, the edit script elements already have types. Each view element that already has a
type is displayed using the same type- and style- dependent visualization that it would have in
AcmeStudio. If the user does not specify architectural types and styles, the elements that the edit
script will create will be untyped. Of course, the user can set the types on the newly inserted
view elements at a later point in AcmeStudio. Although assigning types during synchronization
seems to duplicate functionality, it may affect the edit script and the view merging as explained
below.

For instance, when a component instance is assignedhititer component type, it inherits
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Figure 5.9: Matching types between the designed Acme model of a simple system following the Pipe-
and-Filter style with its built ArchJava implementation.

any ports declared on that type, e.g., padgut andoutput, of typesinputT andoutputT. SO
ArchJ2Acme need not create additional ports of these types on the component instance. Based
on the user’s selection in Fig. 5.9, the tool matches the ArchJavgpotut—since it only
provides methods, with the Acme typetputT. The tool suggests renaming the ppstt0Out
of typeoutputT, to match theoutput port on theFilter type.

The user can accept the corrective actions suggested by the tool using the Auto-Correct button
in Fig.[5.10. In that case, the tool automatically renapw@s0ut port tooutput, and updates
all the cross-references in the edit script. The user can also change the assigned or inferred types
before pushing the changes to the Acme model.

5.5 Evaluation

In this section, we evaluate the tools for C&C view synchronization in several extended exam-
ples on real architectural views. Our evaluation aims to answer the following hypothesis from
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Figure 5.10: Validating the edit script can involve renaming some ports to match the names declared in
the Acme type.

Sectior 1.ID.

H-5: An analysis can structurally compare the built architecture to a documented
target runtime architecture.

We refine the hypothesis into the following research questions:

RQ2 — Comparison: Can the structural comparison meaningfully compare a built archi-
tecture extracted from the implementation to a designed architectire?measurable criteria
here are to minimize the occurrences where a developer must manually force or prevent matches
between the view elements.

We now present three extended examples: AphydsAJ (Sedction 5.5.1), Duke’s Bank (Sec-
tion[5.5.2) and HillClimberAJ (Sectidn 5.5.3).
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Figure 5.11: Aphyds: informal designed architecture drawn by the original developer. Source:

(Aldrich et all2002a).

5.5.1 Extended Example: AphydsAJ

In this example, we synchronize a designed C&C view with a built C&C view retrieved from an
implementation. This example mainly highlights the ability of the underlying MDIR algorithm
to detect inserts, deletes and renames.

In ChapteflL, | introduced the Aphyds system. (Aldrich et al. 2002a) re-engineered the orig-
inal Aphyds Java implementation into an ArchJava implementation to evaluate ArchJava’s ex-
pressiveness to specify the architecture in code. In this chapter, we refer to that version as
AphydsAJ. We use AphydsAJ since it has a documented designed architecture, and we can use
the ArchJ2Acme tool to extract a built C&C view from the ArchJava implementation.

In the following discussion, | refer to the person who conducted the evaluation, i.e., myself,
as theexperimenter. Theleveloperis the person who developed the code being analyzed. The
experimenter has no prior experience with the original Java program, or with the process of
re-engineering the Java program into the ArchJava implementation.

Designed Architecture. The developer of the original Java program informally drew the de-
signed architecture (Fig. 5111). The experimenter created an Acme model based on the informal
architecture (Fid. 5.12(a)). He representeddiecuitModel as a single component, and added
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(a) Top-level Acme model.

(b) Acme representation of the rcuitModel component.

Figure 5.12: AphydsAJ: designed architecture represented in Acme.

all the computational components to a representationiofuitModel (Fig.[5.12(D)). In the
original diagram (Figl_5.11), the thin arrows represent control flow, and the thick arrows repre-
sent data flow, but the experimenter did not make that distinction in_Figl 5.12 and showed all
communication as Acme connectors.

Matching Types. The experimenter chose an Acme Model-View-Controller styi&Fam.

Since he was interested in the control flow, he assignegitheideT Acme port type defined

in MVCFam to any ArchJava port that only provides methods. Similarly, he assigneast#ie

Acme port type to any ArchJava port that only requires methods, angkthe-eqT Acme port

type to any ArchJava port that both provides and requires methods. He also assigned the generic
TierNodeT Acme type to all components and thellReturnT Acme type to all the implicit
ArchJava connectors (See Hig. 5.13).

Matching Instances. The experimenter used the ArchJ2Acme tool to compare the two views.
As he was the least sure about how he representeclittitModel component in Acme, he
decided to focus on that component first.

The ArchJ2Acme tool detected a few renames, e.g., ArchJavamsed instead of
circuitModel, and inside that representation, ArchJava yde®alRouter instead ofroute
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Figure 5.13: AphydsAJ: matching types between Acme (left) and ArchJava (right).

(Fig. [5.14). The experimenter was particularly intrigued that the Acme representation for
circuitModel had more connectors than the ArchJava implementation. In[Figl 5.14, the
tool only matched thetarConnector which connects componentdrcuit, partitioner,
floorPlanner, place, route andchannel (Fig.[5.12). The experimenter investigated this fur-

ther and confirmed that the Acme connectors corresponding to the thick data flow arrows in the
informal diagram (Fig_5.11) are not in the implementation. Since Aphyds was written for aca-
demic study and not for industrial application, it is missing some of the data flows that would be
present in a real application, i.e., the data flow is simulated rather than real. So the experimenter
accepted the edit actions to delete these extra connectors from the Acme model.

Merging Instances. The experimenter next turned his attention to the additional top level com-
ponent, shown asrivateAphyds (Fig.[5.14). Based on the synchronization options he selected,
he determined that the tool createcli vateAphyds to represent a privateindow port in Arch-
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Figure 5.14: AphydsAJ: comparison of Acme C&C view (left) and ArchJava C&C view (right). The
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